
Every Move You Make: Visualizing Near-Future Motion Under
Delay for Telerobotics

Dries Cardinaels

dries.cardinaels@uhasselt.be

UHasselt - Flanders Make

Digital Future Lab

Diepenbeek, Belgium

Raf Ramakers

raf.ramakers@uhasselt.be

UHasselt - Flanders Make

Digital Future Lab

Diepenbeek, Belgium

Tom Veuskens

tom.veuskens@uhasselt.be

UHasselt - Flanders Make

Digital Future Lab

Diepenbeek, Belgium

Thomas Pietrzak

thomas.pietrzak@inria.fr

Univ. Lille, Inria, CNRS, Centrale Lille,

UMR 9189 CRIStAL

Lille, France

Gustavo Alberto Rovelo Ruiz

gustavo.roveloruiz@uhasselt.be

UHasselt - Flanders Make

Digital Future Lab

Diepenbeek, Belgium

Kris Luyten

kris.luyten@uhasselt.be

UHasselt - Flanders Make

Digital Future Lab

Diepenbeek, Belgium

Figure 1: Three predictive visualizations for delayed teleoperation. Left: Network visualization shows when commands will

take effect. Middle: Path visualization projects the robot’s intended trajectory. Right: Envelope visualization extends the path

with worst-case deviation bounds indicating possible divergence from environmental disturbances.

Abstract

Delays in direct teleoperation decouple operator input from robot

feedback. We frame this not as a unitary problem but as three facets

of operator uncertainty: (1) communication, when commands take

effect, (2) trajectory, how inputs map to motion, and (3) environmen-

tal, how external factors alter outcomes. We externalized each facet

through predictive visualizations: Network, Path, and Envelope.

In a controlled study with 24 participants (novices in telerobotics)

navigating a simulated robot under a fixed 2.56 s round-trip delay,

we compared these visualizations against a delayed-video baseline.

Path significantly shortened task time, lowered perceived cognitive

load, and reduced reliance on reactive “move-and-wait” behavior.

Envelope lowered cognitive load but did not significantly reduce
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reactive behavior or improve performance, while Network had no

measurable effect. These results indicate that predictive support is

effective only when trajectory uncertainty is externalized, enabling

operators to move from reactive to more proactive control.
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1 Introduction

Telerobotics has long served as a way to extend human action into

environments that are dangerous or inaccessible, ranging from han-

dling radioactive material to military usage and exploring planetary

surfaces [20, 23, 35, 40]. Rather than replacing people, robots aug-

ment human capability [17, 21, 54]: they provide mobility, precision

and endurance, while humans contribute perception, judgment, and

adaptation. This complementary relationship keeps human intelli-

gence at the center of critical tasks and has made remote operation

indispensable in high-stakes domains such as disaster response and

planetary exploration.

The value of this partnership relies on prompt feedback between

operator and robot. With increasing distances, communication de-

lay becomes a defining constraint for interaction: round-trip com-

munication delays from hundreds of milliseconds to many seconds

decouple command and feedback. This leaves operators uncertain

about when inputs take effect and whether their inputs lead to the

expected outcomes.

Increasing levels of autonomy can mitigate the impact of de-

lay, particularly in structured tasks where actions and outcomes

are predictable [38, 61]. However, even advanced systems require

oversight [39], and humans remain more flexible in unpredictable

environments [49]. In these settings, delay forces operators to act

under temporal uncertainty, where the timing and consequences of

their actions are no longer immediately observable. Even modest

delays of around 300ms can degrade performance by misaligning

operator expectations with actual system behavior [8, 26, 42]. In-

terfaces must therefore support humans in maintaining effective

control under delay rather than removing them from the loop.

To understand why delays are so disruptive, it is useful to con-

sider how operators normally learn to control a robot under delay-

free conditions. In these settings, they gradually build a mental

model of how input commands translate into robot behavior. For

instance, pressing a forward key moves the robot a specific dis-

tance, or a turn input results in a predictable rotation. This control-

to-motion mapping depends not only on kinematics but also on

environmental factors such as terrain roughness or wheel slippage.

Over time, operators refine their internal model through observa-

tion and adaptation, even accounting for visual cues such as soft

soil or obstacles that signal potential changes in system response.

Delay fundamentally disrupts this calibration process. It obscures

the immediate consequences of each action, weakens the temporal

link between input and feedback, and slows operators’ ability to

adjust their inputs. This makes it harder to refine a mental model

of the system, especially in dynamic or uncertain environments. As

a result, effective control under delay becomes not only a technical

challenge, but a cognitive one [12, 27, 56].

One well-established mitigation strategy is “move-and-wait” be-

havior [14], where operators issue a command and then pause until

delayed feedback confirms the result. While stabilizing, this behav-

ior increases task time and cognitive load. From a cognitive perspec-

tive, temporal uncertainty forces operators to wait before feedback

resolves, disrupting perception, comprehension, and projection of

system state [12] and widening Norman’s gulfs of execution and

evaluation [45], making it harder to know whether an action was

effective or to anticipate the next state.

Technical countermeasures, such as network compensation, can

reduce network variability, yet operators remain responsible for

control under delay. Framing delay as temporal uncertainty rather

than a communication defect shifts design focus from elimination

to adaptation, motivating interface techniques that externalize the

timing, consequences, and reliability of control actions [5, 22].

One long-standing interface approach to temporal uncertainty

is the predictive display. These systems compute and visualize the

robot’s near-future state [3, 4, 11]. By projecting likely behavior,

predictive displays clarify the link between action and feedback

and help operators anticipate outcomes [9, 37]. Predictive displays

embody feedforward [60], providing perceptual cues that support

projection in Endsley’s model of situational awareness [12] and nar-

rowing Norman’s gulfs of execution and evaluation [45]. At design

time, tools such as Choreobot [58] help identify where feedforward

should be placed along task timelines to improve intelligibility in

human-robot interaction.

While predictive displays have demonstrated clear benefits in

helping operators anticipate delayed responses, most have treated

delay as a single, monolithic challenge [39]. However, delayed tele-

operation exposes operators to multiple, interacting forms of uncer-

tainty: when actions will take effect (communication delay), how

issued commands will unfold over time (trajectory uncertainty),

and how the environment will alter or disrupt expected outcomes

(environmental uncertainty). Treating delay as a unitary phenome-

non obscures how these sources interact and how interface support

should be tailored to each.

Studying how interfaces can address these distinct uncertainties

requires operating at a delay that is both cognitively challenging

and still feasible for human-in-the-loop control. Delays in the two-

to-ten-second range are known to mark a transition zone in which

direct control becomes fragile and operators must increasingly rely

on predictive or supervisory strategies [7]. We position our study at

the lower bound of this intermediate range, using a 2.56 s round-trip

delay, equal to the theoretical minimum for Earth–Moon communi-

cation [41]. This allows us to probe how uncertainty-aware support

performs under demanding but still interactive conditions, which

establishes a controlled, reproducible baseline: if addressing uncer-

tainty meaningfully assists operators here, it provides a principled

starting point for identifying when such support might begin to

break down, creating clear opportunities for future work on longer

and more variable delays.

To investigate how uncertainty can be externalized in practice,

we introduce three visualization strategies that each target one

of the identified uncertainty sources. The Network visualization
reveals the timing of command execution, clarifying when inputs

will take effect. The Path visualization projects the robot’s expected

motion based on queued operator inputs. The Envelope visualization
communicates how environmental variability may cause deviations

from that projection. Together, these designs allow us to examine

how different uncertainty representations support operators’ ability

to plan, predict, and act under delayed feedback.

Therefore in this paper, we contribute:

(1) A decomposition of delay as operator uncertainty, distin-

guishing three key facets that affect control in delayed tele-

operation: communication, trajectory, and environmental
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uncertainty. This extends prior work on predictive displays,

which has often treated temporal delay as a single, unified

problem.

(2) Three visualization techniques that explicitly externalize

these uncertainty facets: a Network visualization to expose

command timing, a Path visualization to project predicted

motion, and an Envelope visualization to visualize potential

deviations caused by environmental variability.

(3) A controlled study with 24 participants navigating a mobile

robot under a fixed round-trip delay (2.56 s). We compared

the three visualizations to a delayed-video baseline in terms

of task performance, reactive behavior, and perceived cogni-

tive load.

(4) Empirical evidence that trajectory-based feedforward (Path)

significantly improved control performance by reducing task

time, supporting more proactive input, and lowering cog-

nitive load. The Envelope visualization reduced perceived

cognitive load but did not yield stable performance bene-

fits, while the Network visualization showed no measurable

improvement over the baseline.

2 Related Work

Early work by Ferrell and Sheridan [15, 54] established a frame-

work for human–robot control, distinguishing direct, shared, and

supervisory modes. As robots moved from tethered to remote en-

vironments, physical separation introduced communication delay.

Every command and sensor update must traverse a link, breaking

the immediate coupling between action and feedback and making

it harder for operators to maintain a reliable mental model of the

robot’s state.

2.1 Communication Delays in Telerobotics

All mobile telerobotic systems introduce communication delay,

whether on Earth or in space [44]. On Earth, applications such as

search and rescue [33, 40] or mining [57] encounter delays ranging

from 100ms to several seconds depending on network infrastruc-

ture. In space, the issue is more severe because communication

is bounded by the speed of light: the Earth–Moon distance im-

poses a minimum round-trip time of about 2.56 s [1, 41]. Actual

operational figures are higher; for example, NASA’s VIPER rover

is expected to experience 6 s to 10 s round-trip delay via the Deep

Space Network [16]. Beyond these physical limits, real networks

introduce variability through processing, routing, and bandwidth

constraints [55, 63]. Many laboratory studies simplify experiments

by treating delay as a fixed constant [3, 36, 37], although in practice

operators must cope with both predictable and variable delay [9].

Delay also affects domains such as surgical teleoperation [29, 46, 48]

and UAV control [65], where it reduces precision and safety. While

this paper focuses on mobile teleoperation, these examples demon-

strate that delay is a pervasive challenge across telerobotics.

Delay also alters operator behavior. Ferrell’s experiments [14]

showed that under delay, operators adopt a “move-and-wait” be-

havior: issue a command, wait for confirmation, then act again. The

strategy reduces instability but increases task time in proportion

to the delay [10, 13]. Similar patterns are reported in space tele-

operation, where delays beyond human cognitive timescales force

cautious, stepwise control [31]. “Move-and-wait” has therefore be-

come a common benchmark for evaluating new interfaces. These

adaptations demonstrate that delay is not only a systems constraint

but also a cognitive challenge [56].

2.2 Cognitive Effects of Delay

Empirical studies show that communication delay affects both con-

trol and cognition. Even relatively short delays of about 300ms

can create mismatches between operator expectations and the ac-

tual robot state [26, 42], increasing errors and perceived cognitive

load. Experiments in lunar construction confirm that delay reduces

control accuracy and increases mental demand compared to zero-

delay conditions [53]. Dybvik et al. [11] similarly find that vehicle

teleoperation under delay diminishes situational awareness and

substantially increases perceived cognitive load. Comparable effects

are reported in surgical teleoperation [29, 48] and in autonomous

vehicle teleoperation [56], where delay undermines operator confi-

dence and adds cognitive strain.

The mechanism underlying these effects is a disruption of situa-

tional awareness. Operators perceive the environment only through

cameras and displays; when feedback is delayed, their mental model

of the remote state is updated with stale information [3, 27]. This

temporal misalignment introduces uncertainty about the robot’s

actual state. Prior work shows that uncertainty can accumulate

even when operators act correctly, forming “uncertainty loops” that

erode trust and performance [32]. Interfaces that make a robot’s

uncertainty visible can help preserve operator agency and deci-

sion quality [52], but poorly designed uncertainty visualizations

risk confusion or mistrust [5, 22]. In telerobotics, delay exacer-

bates these issues by forcing reliance on memory and prediction;

in extraterrestrial contexts, sparse visual cues further intensify the

burden [53].

These outcomes align with established cognitive theory. In Ends-

ley’s model, delay disrupts perception and comprehension, weaken-

ing projection of future states [12]. In Norman’s framework, delay

widens the gulfs of execution and evaluation: Operators must issue

commands before the effects of their previous inputs become visi-

ble, while delayed feedback prevents timely confirmation. [45]. To-

gether, these accounts underscore the need for interface techniques

that make uncertainty visible, sustain awareness, and support an-

ticipation under delay.

2.3 Delay Mitigation Strategies

Various control strategies have been proposed to mitigate the ef-

fects of communication delay. Surveys highlight control-theoretic

approaches that can improve stability and transparency of control

under communication delay [13, 26]. Their performance, however,

depends on accurate delay models and careful tuning, and they do

not focus on the operator’s temporal uncertainty when directly

interacting with the robot [13, 26]. A line of research targets the

perception side via predictive displays, which render the robot’s

near-future state from current commands and motion models to

clarify the action to outcome loop [3, 4, 51]. Building on early work

that introduced wire-frame and trajectory projections [3, 4] and sub-

sequent variants such as ghost overlays [25], trajectory lines [18],

and hybrid approaches [28, 66].



CHI ’26, April 13–17, 2026, Barcelona, Spain Cardinaels et al.

Moniruzzaman et al. [39] survey predictive displays extensively

and report that they can reduce perceived communication delay, yet

most implementations remain limited to first-order state predictions

like a position or direction, and rarely represent uncertainty or the

probabilistic nature of future events; mismatches between predic-

tions and outcomes can undermine operator trust, consistent with

broader findings on automation trust [30]. Consequently, existing

predictive displays often emphasize what will happen without dif-

ferentiating the distinct uncertainty sources that shape and support

direct operator control. Our work addresses this gap: we decompose

operator uncertainty into when commands take effect (communi-

cation), how input maps to motion (trajectory), and what external
factors may alter outcomes (environmental), and we systemati-

cally evaluate facet-specific visualizations under fixed upper-bound

delay.

Predictive displays are feedforward interfaces [60] that commu-

nicate the likely, but in this case not guaranteed, consequences of

an action before execution, thereby narrowing Norman’s gulf of

execution by making action-outcome relations visible [45]. Recent

work formalizes the design space of feedforward cues: Yu et al. [64]

characterize variations in level of indirection (explicit, implicit,

abstract) and update strategy (discrete, continuous, autonomous);

trajectory overlays instantiate implicit feedforward (showing the

future indirectly), whereas ghost projections exemplify explicit

feedforward (depicting the future directly and unambiguously) [2].

Complementing these taxonomies, Van Deurzen et al. [58] provide

a framework and dashboard that help developers to include feed-

forward for working with (semi)-autonomic robots, highlighting

where and when predictive cues are required, desired, or optional.

3 UNITE: A Teleoperation Simulation and

Control Environment

To study teleoperation under delay, we developed UNITE, a Unity-

based simulation environment. It provides reproducible conditions

while allowing configurable manipulation of uncertainty factors

such as noise, delay, and terrain. This ensures that visualization

effects can be evaluated independently of uncontrolled variability.

3.1 Robot Dynamics

In UNITE, robot dynamics are implemented as modular compo-

nents. This means that the motion equations and physical limits

of the robot are encapsulated in interchangeable models. For our

study we used the Turtlebot3 Waffle Pi
1
, a differential-drive robot,

with kinematics based on its wheelbase and motor specifications.

To support more precise control in our environment, we reduced

the maximum rotational speed from 1.82 rad s−1 to 0.30 rad s−1. Be-
cause dynamics are modular, different robots can be loaded without

altering the interface details.

3.2 Noise Model

To approximate imperfections in real robotmotion, we implemented

a deterministic noise model aligned with the kinematics of a differ-

ential drive robot. This model introduces variation in the robot’s

motion by adjusting the commanded left and right wheel velocities

1
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/

according to six uncertainty sources, applied before each update of

the robot state:

(1) Wheel slip: traction is reduced on rough terrain or at higher

speeds, lowering effective velocity.

(2) Motor variation: small, time-varying differences between the

left and right motors introduce drift.

(3) Terrain vibration: uneven ground causes oscillations that

momentarily disrupt wheel-ground contact.

(4) Encoder noise: measured wheel velocities include small inac-

curacies, simulating sensor error.

(5) Slope bias: when traversing inclines, load shifts unevenly

across wheels, producing asymmetric motion.

(6) Wheel performance dynamics: time-varying factors including

thermal effects, material deformation, and debris accumula-

tion create oscillating differences in effective wheel perfor-

mance.

Effects (3–4) are generated using Perlin noise, a smooth noise

function that produces gradual rather than abrupt changes [50].

Unlike random noise, which jumps unpredictably, Perlin noise cre-

ates continuous patterns over space and time, which better matches

how disturbances such as terrain roughness or motor noise occur.

Effects (1–2, 4, 6) are based on velocity data, whereas effects (3, 5)

are based on positional data.

The noise model is seeded deterministically so identical inputs

produce identical deviations across conditions. Its parameters were

iteratively calibrated to produce clear, realistic trajectory variations

representative of normal rough-terrain motion. The role of this

approximation is to introduce enough variability for environmental

uncertainty to matter, while keeping that variability constrained

so the visualization conditions (see Section 4) can be compared

reliably.

3.3 Fixed-delay model and implementation.

To isolate the effect of delayed feedback, UNITE applies a constant

2.56 s round-trip delay. Real networks often have variable delay,

which can cause jitter, buffering, and dropped frames. This makes it

harder to tell whether performance differences stem from the delay

itself or from its fluctuations [42, 63]. A fixed delay removes this

ambiguity. With a stable communication delay, we can compare

how each visualization supports operator control [5, 22].

A fixed delay also reflects a practical abstraction. When delay

varies within a known and bounded range, the system can treat

the largest observed value as its effective delay (see Figure 2). This

creates a consistent reference value for applying delay in the con-

trol loop. In UNITE, the fixed value is 2.56 s, which corresponds

to the theoretical lower bound round-trip time for Earth to Moon

communication [41], providing a concrete reference point for the

scale of temporal separation implemented in the system. By enforc-

ing a fixed delay, all interface conditions operate under the same

temporal separation between action and feedback.

Technically, the delay is realized through a time-stamped com-

mand queue: inputs are stored with their execution times and ap-

plied only after 2.56 s. During this waiting period, queued com-

mands are also used to generate the lookahead trajectories (Sec-

tion 4), ensuring consistent delayed dynamics across all visualiza-

tion conditions.

https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
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Figure 2: Round-trip communication delay. Real-world de-

lay fluctuates over time (blue). In UNITE, variability was

replaced by a fixed upper bound (dashed red), excluding the

fluctuation margin (shaded).

3.4 Environment Generation

Two terrains were generated in advance from publicly available

displacement maps (Moonscapes
2
). One terrain is used for training,

and the other serves as the navigation environment. Both terrains

remain fixedwithin the simulation, ensuring that rendering, physics

integration and terrain-aware noise operate over consistent surface

geometry.

The terrain supports two roles in the system. First, it provides

the visual surface onto which trajectory predictions are projected

so that visualizations follow local ground topology (see Section 4).

Second, it acts as the collision and support surface for robot motion.

The robot’s vertical position is updated via raycasting, while slope

and roughness are estimated in real time using a three-point trian-

gulation method. These terrain-derived values drive the position-

based components of the noise model (effects 3 and 5), ensuring

that disturbances originate from structured features of the surface

rather than arbitrary perturbations.

To approximate lunar and space conditions, UNITE uses a single

directional light (sun analog), no atmospheric scattering, and a

dark sky. Figure 3 shows the simulated robot traversing one of the

generated terrains. For clarity in this paper, lighting in Figure 3 was

adjusted to make details of the robot and terrain more visible.

4 Externalizing Uncertainty in Teleoperation

Interfaces

Effective teleoperation requires operators to form a reliable mental

model of how their inputs affect robot behavior. Under delay, this

becomes increasingly difficult: the temporal gap between input

and feedback obscures the consequences of each action, weakening

the ability to predict outcomes or adapt to changing conditions.

These difficulties, however, originate from multiple sources, includ-

ing ambiguity about when commands are enacted (communication

uncertainty), how inputs translate into motion given the robot’s

dynamics (trajectory uncertainty), and how environmental condi-

tions such as terrain or slippage may alter the robot’s response

(environmental uncertainty).

2
Moonscapes 8K displacement maps, available at: https://ftp.mantissa.xyz/resources/

moonscapes/

Figure 3: Simulated robot on a lunar-like terrain. Terrains

were generated from displacement maps and used for both

rendering and physics simulation.

Figure 4: Control loop in delayed teleoperation. Operator

inputs pass through the interface, network delay, and com-

munication channel before reaching the robot, with delayed

video feedback returning to the operator. This introduces

three uncertainties:when input takes effect (communication),

how input maps to motion (trajectory), and what external
factors do to the outcome (environmental).

To support operator reasoning under delay, we designed three

visualizations that each target one of these uncertainty sources (see

Figure 4). The Network visualization makes the timing of command

execution visible, externalizing communication delay. The Path vi-

sualization projects the robot’s expected trajectory based on current

input, clarifying the mapping between control and motion through

feedforward prediction. The Envelope visualization builds on the

same predictive model but augments it with a visual representation

of potential deviations caused by environmental variability. By ex-

ternalizing distinct facets of uncertainty, these visualizations aim

to support reduced reliance on reactive “move-and-wait” behavior,

reduce cognitive load, and help operators maintain an accurate

and adaptable mental model, even when immediate feedback is

unavailable.

4.1 Network Visualization

The Network visualization targets communication uncertainty:

the ambiguity about whether a command has been sent, and when

its effects will become visible in the delayed camera feed (Figure 5).

Under delay, this uncertainty forces operators to rely on mem-

ory or guesswork to keep track of input timing, which weakens

https://ftp.mantissa.xyz/resources/moonscapes/
https://ftp.mantissa.xyz/resources/moonscapes/
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(a) Simulation view with network visualization overlay.

(b) Schematic of externalized command pipeline.

Figure 5: Network visualization. (a) Simulation environment

with timelines overlaid at the bottom of the interface, show-

ing pending input commands as blocks progressing toward

execution. (b) Schematic view illustrating the externalized

command pipeline across four input channels, clarifying the

relationship between operator actions and delayed robot re-

sponses.

their ability to coordinate actions effectively. For example, when

approaching a turn, the operator must anticipate the delay and

issue the turn command early enough for the robot to respond in

time. To reduce this ambiguity, the Network visualization applies

established HCI principles of system transparency and status visi-

bility [43, 45]. It externalizes the command pipeline by visualizing

the delay between input and execution, making command timing

explicit and allowing operators to anticipate when their actions

will take effect.

The Network visualization presents four parallel timelines, one

for each arrow key, aligned spatially to match the layout of the

physical keyboard. This spatial arrangement follows Norman’s

principle of natural mapping [45], reinforcing intuitive associations

between the user actions and the visualizations on the timelines.

Each timeline functions as a communication channel, with the left

side representing the operator’s input, and the right side repre-

senting the robot’s execution point. When a control signal is sent

(arrow is pressed), a green block appears at the left end of the cor-

responding timeline. The block’s length encodes the duration of

the keypress, and it animates rightward across the timeline, sim-

ulating the time it takes for the command to reach the robot, and

the video feedback to propagate back—corresponding to the fixed

communication delay (2.56 s). Once the block reaches the far end,

the command is assumed to have taken effect and is observable

in the delayed video feed. These timelines make the otherwise in-

visible delay visible and predictable. The steady animation speed

provides a rhythmic, perceptible timeline that allows operators to

offload timing calculations and anticipate when a command will

take effect. Overlapping commands are displayed sequentially on

their respective key channels.

Data Requirements. The visualization requires only input

timestamps, keypress durations, control mappings, and the known

fixed round-trip delay. It does not require access to robot pose,

motion data, or kinematic models. As such, it offers a lightweight

way to surface temporal uncertainty without introducing spatial

prediction.

4.2 Path Visualization

The Path visualization addresses trajectory uncertainty: the dif-

ficulty of inferring how input commands will translate into robot

motion under delay. Path visualization (Figure 6) does this by ren-

dering a prediction in real-time of how input could translate into

movements of the robot. Without explicit support, operators must

mentally simulate the robot’s motion dynamics, which becomes

increasingly error-prone as the delay grows. Such “predictive over-

lays” are an established design practice in vehicle interfaces (e.g.,

reversing camera path projections), where they help users antici-

pate the spatial outcome of steering. In delayed teleoperation, such

feedforward cues allow operators to predict the robot’s behavior

without waiting for delayed video feedback, thereby reducing the

cognitive effort needed to maintain situational awareness.

The visualization projects where the robot will move next by

applying an idealized motion model. It assumes perfect conditions:

no wheel slippage, no external disturbance, and no environmental

variability. The result is a feedforward prediction, an estimate of

the robot’s path if the current command were executed exactly as

intended. As shown in Figure 6, the interface overlays three trajec-

tory lines on the video feed: one for each wheel and a third through

the instantaneous center of rotation. These overlays update contin-

uously with input: forward keypresses extend the lines outward,

backward keypresses extend them inward, and left/right inputs

bend them accordingly. Each segment is drawn cumulatively, so

prior forward extensions remain visible when subsequent backward

inputs are added. The trajectory length scales with the duration

of keypresses and is capped by the fixed round-trip delay of 2.56 s,

which defines the maximum lookahead window.

Kinematic Model. Trajectory prediction is computed using

standard differential-drive kinematics: linear velocity 𝑣 = (𝑣𝐿 +
𝑣𝑅)/2 and angular velocity 𝜔 = (𝑣𝑅 − 𝑣𝐿)/𝑑 , where 𝑣𝐿 and 𝑣𝑅 are

the left and right wheel velocities and 𝑑 is the wheelbase. These

values are integrated forward in time to generate a continuous
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(a) Simulation view with trajectory projections.

(b) Schematic of projected wheel and center trajectories.

Figure 6: Path visualization. (a) Simulation environment

view showing predicted wheel and centerline trajectories

projected ahead of the robot. (b) Schematic illustration of the

trajectory layout, highlighting left/right wheel paths and the

center reference line within the lookahead window.

pose trace that approximates the robot’s motion over the lookahead

window.

Data Requirements. Path visualization requires only three in-

puts: the robot’s current position, the user’s control commands,

and the wheelbase parameter. These values define a noise-free kine-

matic model that predicts the trajectory the robot would follow

under ideal execution. In our implementation, the position anchors

the prediction in space, the commands define wheel velocities over

time, and the wheelbase determines curvature. In our simulation,

the robot’s current position is obtained directly from the Unity

environment, control commands are captured from the keyboard

input system, and the wheelbase is defined by the TurtleBot3 model.

In real deployment, pose can be estimated via SLAM or GPS, user

inputs are available directly from the control interfaces, and robot

parameters are typically known from manufacturer specifications.

Importantly, the visualization shows intended motion, not actual

execution, reinforcing its role as a feedforward aid that supports

planning and prediction.

(a) Simulation view with envelope projection.

(b) Schematic of projected envelope bounds.

Figure 7: Envelope visualization. (a) Simulation environment

with a translucent cone-shaped region indicating the worst-

case deviation envelope over the terrain. (b) Schematic illus-

trating the reference trajectory (center line) and bounding

curves that define the limits of possible deviation.

4.3 Envelope Visualization

The Envelope visualization addresses environmental uncertainty:

the variability in robot motion caused by environmental factors,

such as slippage, terrain conditions, motor noise, or other external

factors. The visualization extends the Path visualization: instead

of projecting a single trajectory, it visualizes a cone-shaped region

that represents the maximum possible deviation from the ideal

path, given a set of modeled disturbances including terrain slippage

and system noise (Figure 7). This visualization helps operators not

only anticipate the robot’s intended direction, but also reason about

how actual motion might diverge under uncertain environmental

conditions.

As shown in Figure 7, the envelope is rendered as a translucent,

cone-shaped region aligned with the robot’s apex point. The cen-

ter of the cone shows the ideal, noise-free trajectory (identical to

the Path visualization), while the left and right bounds mark the

maximum deviation under modeled disturbances. The envelope dy-

namically expands in both width and length as keypress duration
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increases, up to the limit imposed by the fixed round-trip delay of

2.56 s. The shaded region thus reflects the cumulative effect of un-

certainty over time. Importantly, this is not a probabilistic estimate,

it reflects aworst-case spread, guaranteeing that the actual trajectory
remains within the envelope under the modeled assumptions.

Kinematic Model. The model uses the same kinematic equa-

tions as the Path visualization (𝑣 = (𝑣𝐿+𝑣𝑅)/2,𝜔 = (𝑣𝑅−𝑣𝐿)/𝑑), but
modifies the input velocities to account for environmental distur-

bances. As detailed in the noise model (Section 3), six disturbances

are modeled: wheel slip, motor variation, terrain vibration, encoder

noise, slope bias, and wheel dynamics. While the simulation applies

these disturbances dynamically via seeded noise, the Envelope vi-

sualization instead uses deterministic upper bounds derived from

the same model parameters. These bounds are then propagated

through the kinematic equations to compute the largest possible

divergence from the intended trajectory. The adjusted velocities

(𝑣 ′
𝐿
, 𝑣 ′

𝑅
) define the left and right envelope boundaries.

Data Requirements. In our simulation, the Envelope visualiza-

tion uses the robot’s current position (from the Unity environment),

the user’s control commands (from keyboard input), the wheelbase

(from the TurtleBot3 model). Disturbance parameters are sourced

from the simulation’s noise model (Section 3). In real-world settings,

obtaining reliable disturbance bounds is more challenging. Some

parameters—such as slope or surface roughness—can be inferred

from onboard sensors (e.g., LiDAR or stereo vision), while others,

like motor slippage or vibration, are harder to sense directly and

often require offline testing or empirical calibration. As such, prac-

tical deployment of this visualization would require careful tuning

of the uncertainty model.

5 User Study: Evaluating Visual Feedback for

Telerobotic Navigation with Delays

This study examines how the three different visualizations can

reduce operator uncertainty in the direct control of UGVs under

communication delay. The experimental task required participants

to navigate a bounded environment (see Section 3.4) as quickly as

possible. Accuracy was not measured independently, because the

environment was designed to constrain large deviations: cliffs and

boundaries prevented off-path driving and thus enforced a baseline

level of accuracy. This design allowed task completion time to

serve as the primary performance metric, ensuring that differences

across conditions reflected control efficiency under delay rather

than individual variations in speed–accuracy tradeoffs.

5.1 Study Objectives

The central challenge in delayed teleoperation is operator uncer-

tainty: delayed feedback obscures when commands take effect, how

they map to motion, and how environmental factors may alter

outcomes. Without support, operators fall back on reactive “move-

and-wait” control, which increases task time and cognitive load.

Our objective is to test whether externalizing the distinct facets of

uncertainty through feedforward visualizations can reduce reliance

on reactive control and improve direct teleoperation. This motivates

the following research question:

What are the effects of the three facets of uncertainty on operator
performance and cognitive load under delayed mobile teleoperation?

To answer this question, we test two hypotheses:

H1: Feedforward visualizations reduce task completion time

under communication delay compared to delayed-video feedback

alone.

H2: Feedforward visualizations will reduce subjective cogni-

tive load under communication delay compared to delayed-video

feedback alone.

5.2 Participants

We recruited 24 participants (M = 26.1 years, SD = 6.5, range =

20–44; 14 men, 10 women). Non-binary/other and prefer-not-to-say

options were offered, although none were selected. All participants

were novices; experts in telerobotics were not included in the study.

Participants were recruited via the research lab’s mailing lists

and the research team’s personal networks. While this reflects a

convenience sample, we sought variation in gaming background, as

pilot observations suggested this might influence operator behavior.

Gaming background was self-reported on a five-point scale: never

(n = 7), less than once a month (n = 4), 1–3 times a month (n = 3),

weekly (n = 3), or several times per week (n = 7). For exploratory

analyses, we grouped participants into two categories: those who

reported gaming at least weekly (coded as high gaming experience,
𝑛 = 10) and those who reported less frequent or no gaming (coded

as low/no gaming experience, 𝑛 = 14).

All participants provided informed consent prior to participation.

The study was approved by the university’s Social and Societal

Ethics Committee (SMEC). Participation was voluntary, with no

compensation, and participants were informed that they could

withdraw from the study at any time without consequence.

5.3 Setup and Apparatus

Participants used UNITE (see Section 3) to control a simulated

UGV in a lunar-terrain environment (see Section 3.4). UNITE ran

on a remote virtual machine (4 CPU cores, 8 GB RAM, 200 GB

SSD, 200 Mbit/s network). The simulation ran at 50 Hz physics

update and rendered at 120 FPS, streamed in real time applying a

communication delay. The interface was presented in a 2560 × 1360

px browser window on a 27 inch Dell UltraSharp U2717D monitor

(native resolution 2560 × 1440 px). Participants used a Logitech

MX Keys keyboard with numpad, which they were free to position

according to their preference.

We used a dual-window setup: one browser window hosted

the Qualtrics questionnaire, while the second window was used

for UNITE. The questionnaire window communicated with the

experiment server to trigger the loading of condition sequences

and to synchronize trial progression. UNITE continuously queried

the server for updates and transmitted trials back to the central

database on completion. All trial data was stored under unique

participant identifiers and linked to the questionnaire responses.

Questionnaires were hosted externally in Qualtrics, rather than

integrated into the Unity interface, to ensure consistency in survey

delivery, robust data export, and reduced development overhead.
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Figure 8: Completion rate calculation. The reference trajec-

tory was discretized into 101 waypoints from start (0%) to tar-

get (100%). A participant’s endpoint (red cross) was matched

to the closest waypoint (green dot), and its index defined the

completion rate.

5.4 Experimental Design

We used a within-subjects design: all 24 participants experienced

four conditions: a Baseline showing only the delayed video feed,

and three visualization conditions (Network, Path, Envelope). Order

was counterbalanced with a Williams Latin square [62], assigning

each of the four base sequences to six participants. The independent

variable was the visualization’s information level (see Section 4).

Dependent variables were completion time, perceived cognitive

load (adapted NASA-TLX), responses to the post-condition ques-

tionnaire, and reliance on reactive “move-and-wait” behavior.

Task performance was measured as (a) completion time, defined

as elapsed time from task start (click into the simulation window)

to reaching the target within 300 s, and (b) completion rate for un-

successful trials. Completion rate was the proportion of a reference

trajectory reached (Figure 8). This trajectory was derived from suc-

cessful attempts and discretized into 101 evenly spaced waypoints.

For each unsuccessful trial, the participant’s endpoint was matched

to the closest waypoint (Euclidean distance), and completion rate

was defined as its index divided by 100.

Reactive “move-and-wait” behavior was coded as pauses of at

least 2.56 s between inputs, matching the round-trip delay and

Ferrell’s definition [14]. Reduced reliance on reactive behavior was

coded as shorter intervals, indicating proactive input during motion.

Perceived cognitive load was measured with an adapted NASA-

TLX [24], all items scored 0–20. The frustration item was excluded

but captured in the final questionnaire for cross-condition compar-

ison. We used the Mental Demand item as a proxy for cognitive

load, following prior ergonomics and HCI work [19]. Additional

measures included Likert ratings of visualization effectiveness, self-

assessments of performance, efficiency, and mental model clarity.

The comparative questionnaire captured relative rankings and open-

ended feedback.

5.5 Procedure

Participants were seated behind a monitor. After a short study in-

troduction, they read an information sheet on data handling, ethics,

and voluntary participation, and gave informed consent. They then

completed a demographics questionnaire (age, gender, gaming ex-

perience) and received task instructions describing training and

study tasks, time limits (90 s training, 300 s study), and keyboard

controls.

Each condition began in Qualtrics, which triggered the assigned

visualization. The experimenter switched to the simulation window,

where task instructions appeared. Input was accepted only after

participants clicked into the window, ensuring keyboard focus and

explicit awareness of task start.

Each condition included a short training task, followed by the

main task. Training familiarized participants with terrain and visu-

alization and lasted up to 90 s, ending automatically or via spacebar

if participants felt prepared.

The study task required navigating to a target area (green circle)

as quickly as possible within 300 s. The target was inspired by

Mars Perseverance goal-setting [59]. Participants were instructed

to drive forward to reach the path, which always began ahead of the

start position. The target was initially not visible; participants were

reminded to approach hills cautiously. Because the study examined

visualization under delay rather than path-finding, participants

could confirm with the experimenter whether they remained on

the correct route. This safeguard reduced variance from disorien-

tation and was applied sparingly. Success was defined as reaching

the target within 300 s; otherwise, performance was measured as

proportion of a reference trajectory reached.

After each condition, participants completed an adapted NASA-

TLX, Likert items on visualization effectiveness, and short ratings of

performance, efficiency, and mental model clarity, plus two optional

open-ended questions on difficulties and advantages.

At the end of the study, participants completed a compara-

tive questionnaire ranking the visualizations on usefulness, inter-

pretability, perceived control, and frustration, followed by an open-

ended question about preferred visualization and general comments.

Informal feedback was recorded separately.

5.6 Quantitative Analysis

We analyzed 96 trials from 24 participants across four visualization

conditions. Eight trials reached the 300 s ceiling, and an additional

trial in the Path condition was flagged as a high outlier (282 s) by

the 1.5 × 𝐼𝑄𝑅 rule. All were retained because they reflect real oper-

ator difficulties. Analyses used within-subject non-parametric tests

(Friedman with Wilcoxon post-hoc, Holm correction) and report

effect sizes (𝑟 = 𝑍/
√
𝑁 ). Robustness checks excluding timeouts

and the outlier produced consistent results. For the NASA-TLX

items, we report Mental Demand and Performance, as they reflect

perceived cognitive load and task performance best.

Task Completion Time. Completion times varied across con-

ditions, with several trials reaching the 300 s ceiling, which were

retained in the analysis (Figure 9(a)). Median times were shortest

for Path (Mdn = 135.2 s) and longest for Baseline (Mdn = 209.9 s).

A Friedman test showed significant differences (𝜒2 (3) = 15.35, 𝑝 =

0.002,𝑊 = 0.21). Holm-corrected Wilcoxon tests found Path faster

than Baseline (𝑝 = 0.008, 𝑟 = 0.65), Network (𝑝 = 0.001, 𝑟 = 0.80),

and Envelope (𝑝 = 0.028, 𝑟 = 0.55); Baseline, Network, and Envelope

did not differ. Kaplan–Meier curves (Figure 9(b)) confirmed this

pattern: Path completed all trials, while the others showed slower

progress and timeouts. Table 1 provides descriptive statistics for all

dependent measures.
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Table 1: Descriptive statistics (mean and standard deviation) for all dependent measures across visualization conditions.

Measure Baseline Network Path Envelope

(M/SD) (M/SD) (M/SD) (M/SD)

Task Completion Time 198.5 / 64.8 204.2 / 64.5 138.3 / 41.5 184.8 / 65.2

Number of Pauses 7.79 / 8.51 12.12 / 15.11 3.71 / 8.47 6.69 / 10.99

Subjective Cognitive Load 13.21 / 4.51 12.08 / 4.38 7.29 / 4.44 9.25 / 4.28

Subjective Performance 12.17 / 4.47 12.12 / 4.95 15.88 / 3.01 13.50 / 4.36

Control 1.46 / 0.59 2.21 / 0.83 4.25 / 0.90 3.17 / 0.96

Ease of Interpretation 2.67 / 1.43 2.88 / 1.26 4.33 / 1.01 3.62 / 1.21

Understanding 1.21 / 0.51 2.50 / 0.83 4.04 / 1.04 3.25 / 1.11

Frustration 3.58 / 1.06 3.04 / 1.33 1.46 / 0.72 2.46 / 1.06
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Figure 9: Task completion under delay. (a) Completion times

by condition with a ceiling at 300 s; diamonds mark ceiling

trials and the red dot marks an outlier. (b) Kaplan-Meier

curves showing the proportion of trials ongoing over time,

with numbers at risk listed below.

These findings provide only partial support for H1: only the

Path visualization improved completion time significantly. We per-

formed independent-samples t-tests on the participant-averaged

data, which showed that gaming experience did not affect comple-

tion time, High gaming experience (𝑛 = 10,𝑀 = 171.9, 𝑆𝐷 = 35.9),

Low/No gaming experience (𝑛 = 14, 𝑀 = 188.3, 𝑆𝐷 = 49.2),

𝑡 (22) = −0.95, 𝑝 = .35, 𝑑 = −0.37.

Completion Rates. Completion rates, defined as the propor-

tion of the reference path reached before timeout, were evaluated

only for failed trials. Failures were rare: Baseline (2/24), Network
(4/24), Path (0/24), and Envelope (2/24). When failures occurred,

Baseline and Envelope trials typically ended close to the target (Mdn

= 96% and Mdn = 90%), whereas Network failures stopped earlier

and were more variable (Mdn = 73%, range 35–91%). Because the

number of failures per condition was very small, these outcomes

are reported descriptively only, as sample sizes were too small for

reliable statistical testing.

Reactive “move-and-wait” Behavior. Reactive behavior, de-
fined as pauses ≥ 2.56 s (matching the round-trip delay), occurred in

72 of 96 trials (75%). By condition: Baseline (20/24), Network (21/24),

Path (14/24), Envelope (17/24). Pause counts differed significantly

(Friedman 𝜒2 (3) = 17.59, 𝑝 < .001,𝑊 = 0.24, see Figure 10). Me-

dians were highest in Network (Mdn = 8.5, IQR [1.0–17.5]) and

Baseline (Mdn = 5.0, IQR [1.0–10.8]), and lowest in Path (Mdn = 1.0,

IQR [0.0–2.3]) and Envelope (Mdn = 1.0, IQR [0.0–10.3]). Post-hoc

Wilcoxon tests with Holm correction showed significantly fewer

pauses in Path than in Baseline (𝑝 = 0.012, 𝑟 = 0.22) and in Path
than in Network (𝑝 = 0.006, 𝑟 = 0.26); other contrasts were non-

significant. Thus, Path reduced reliance on “move-and-wait” com-

pared to Baseline and Network, while Envelope showed similarly

low medians but higher variability and no reliable differences. We

performed independent-samples t-tests on the participant-averaged
data, which indicated that gaming experience did not significantly

affect reactive behavior, High gaming experience (𝑛 = 10,𝑀 = 5.2,

𝑆𝐷 = 5.4), Low/No gaming experience (𝑛 = 14,𝑀 = 9.4, 𝑆𝐷 = 11.5),

𝑡 (19.6) = −1.17, 𝑝 = .26, 𝑑 = −0.43.
Pause durations were stable across conditions, with medians of

Baseline (Mdn = 3.18 s, IQR [3.02–3.42]), Network (Mdn = 3.10 s, IQR

[2.89–3.36]), Path (Mdn = 3.22 s, IQR [3.02–3.62]), and Envelope (Mdn

= 3.14 s, IQR [2.93–3.38]). Although a Friedman test indicated overall

differences (𝜒2 (3) = 10.90, 𝑝 = 0.012,𝑊 = 0.30), Holm-corrected

post-hoc tests found no reliable pairwise contrasts (𝑝holm ≥ 0.15).

This indicates that the frequency, rather than the length, of pauses

varied systematically with condition.

Correlation Between Reactive Behavior and Completion
Time. A mixed-effects model with random intercepts for partici-

pants showed that pause frequency (pauses ≥2.56 s) predicted com-

pletion time (𝛽 = 3.97, 95% CI [3.09, 4.85], 𝑝 < .001); each additional

pause added about 4 s. For descriptive reference, a pooled Spearman

correlation across all 96 trials was also large (𝜌 = 0.71, 𝑝 < .001).

Condition-wise correlations with BCa bootstrap CIs (5,000 itera-

tions) corroborated this pattern: Baseline (𝜌 = 0.57, CI [0.15, 0.81]),
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Figure 10: Reactive pauses per trial across conditions. Box-

plots show medians, interquartile ranges, and individual

trials (𝑁 = 24 per condition).
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Figure 11: Completion time as a function of pause frequency

by condition. Panels (a–d) show scatterplots for Baseline,

Network, Path, and Envelope (𝑁 = 24 each). Dashed lines

with 95% confidence bands are least-squares fits.

Network (𝜌 = 0.72, CI [0.47, 0.87]), Path (𝜌 = 0.66, CI [0.21, 0.86]),

and Envelope (𝜌 = 0.69, CI [0.31, 0.87]); all remained significant

after Holm correction. Together with stable pause durations across

conditions, these results indicate that pause frequency, not length,
drove completion time (see Figure 11).

Subjective Cognitive Load. Subjective cognitive load, mea-

sured with the NASA-TLX Mental Demand item (0–20 scale), dif-

fered across conditions. Scores were highest in Baseline (M=13.21,

SD=4.51) and Network (M=12.08, SD=4.38), lower in Envelope (𝑀 =

9.25, 𝑆𝐷 = 4.28), and lowest in Path (M=7.29, SD=4.44). A Friedman

test indicated differences (𝜒2 (3) = 33.20, 𝑝 < .001,𝑊 = 0.46). Post-

hoc Wilcoxon tests (Holm corrected) showed that Path reduced

demand compared to all other conditions (𝑝 < .03), and Envelope

reduced demand compared to Baseline and Network (𝑝 = .005);

Baseline and Network did not differ (𝑝 = .45).

These results provide partial support for H2. Path reduced de-

mand most; Envelope reduced demand relative to Baseline and Net-
work;Networkmatched Baseline. Thus, not all uncertainty facets are
equally effective: externalizing the reference path lowered demand,

whereas visualizing network delay added cues without measurable

benefit.

Subjective Performance. Perceived task performance, mea-

sured with the NASA–TLX (0–20 scale, reverse-coded so that higher

values indicate better perceived performance), differed across condi-

tions. Ratings were highest in Path (M = 15.88, SD = 3.01), followed

by Envelope (M = 13.50, SD = 4.36), Baseline (M = 12.17, SD = 4.47),

and Network (M = 12.12, SD = 4.95). A Friedman test indicated

a significant effect (𝜒2 (3) = 20.09, 𝑝 < .001,𝑊 = .28). Post-hoc

Wilcoxon tests (Holm corrected) showed that Path was rated higher
than Baseline (𝑝 = .002, 𝑟 = .79), Network (𝑝 < .001, 𝑟 = .85), and

Envelope (𝑝 = .037, 𝑟 = .43). No other contrasts were significant.

Thus, only Path improved subjective performance relative to the

alternatives.

Relations Among Performance, Cognitive Load, and Com-
pletion Time. To assess alignment between subjective ratings and

objective outcomes, we examined correlations among perceived

performance (NASA-TLX), perceived cognitive load, and comple-

tion time within each condition. We expected higher self-rated

performance to align with shorter times and lower demand, and

higher demand to align with longer times. Spearman correlations

with BCa bootstrap confidence intervals (5,000 iterations) and Holm

correction (3×4 tests) showed that most associations were negative,

as expected, but did not reach significance after correction. The

only robust effect appeared in the Network condition, where higher

perceived performance was strongly associated with lower per-

ceived cognitive load (𝜌 = −.62, 95% CI [−.85,−.18], 𝑝Holm = .016).

Other correlations, such as performance vs. time in Path and Enve-
lope, were negative but did not survive correction (all 𝑝Holm > .08).

Overall, convergence between subjective and objective indicators

was limited, with reliable alignment only under the Network visu-

alization (Figure 12).

Comparative Questionnaire Responses. Comparative ques-

tionnaire responses (Likert ratings, rankings, and open-ended pref-

erences) converged on a clear preference for Path. Path received the

highest Likert ratings for control (𝑀=4.25, 𝑆𝐷=0.90), understanding

(𝑀=4.04, 𝑆𝐷=1.04), and ease of interpretation (𝑀=4.33, 𝑆𝐷=1.01),

and the lowest for frustration (𝑀=1.46, 𝑆𝐷=0.72). It was most often

ranked first for control (19/24, 79%), performance (15/24, 63%), and

helpfulness (18/24, 75%).

5.7 Qualitative Analysis

To examine participants’ subjective experiences of teleoperation un-

der delay, we conducted an inductive thematic analysis [6]. Adopt-

ing an essentialist epistemology, we treated participant responses

as direct reflections of their experience, prioritizing semantic con-

tent over latent interpretation. The analysis followed a systematic,

data-driven process in which two authors first coded the dataset
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Figure 12: Relations between perceived performance (NASA-

TLX) and mental demand under each visualization condition

(𝑁 = 24). Panels show Baseline, Network, Path, and Envelope.

Lines are Spearman fits with 95% BCa bootstrap intervals;

solid lines indicate significant correlations after Holm cor-

rection, dotted lines non-significant.

Figure 13: Thematic structure derived from the qualitative

analysis. The figure presents two themes and their four re-

lated subthemes arranged with connecting lines.

independently to establish an initial pool of descriptive codes, doc-

umented in a codebook with inclusion and exclusion criteria to

ensure consistent coding and minimize overlap between concep-

tually similar codes (Table 2). These codes were then reviewed

collaboratively to develop a shared understanding of their meaning.

During theme development, we treated codes as provisional and

grouped together codes that described the same underlying idea.

By collapsing these related codes into broader patterns, we moved

from individual observations toward the themes presented below

(see Figure 13).

Theme 1: spatial prediction as control foundation. Spatial
prediction was the central concept that shaped how participants

understood control under delay. Participants consistently treated

control as the problem of acting without knowing where the ro-

bot would end up, rather than a problem of judging when their

inputs would take effect. Participants described control as feeling

deliberate, when a visualization showed a clear future position, and

it became reactive when that position was uncertain. The theme

captures this shared view, with subthemes showing how opera-

tors separated prediction that supported purposeful action from

information that described system behavior but did not help them

control it.

The subtheme enabling proactive control captures cases

where a clear endpoint allowed operators to plan ahead rather

than constantly fixing mistakes. Participants described the Path

visualization as enabling deliberate anticipation: “the feedforward

provided by the path visualizations helped me adapt my actions”

(P11, Path). Other participants used the predicted path to regulate

their timing, explaining that “the change in visualization showed

me that I needed to halt my inputs, reassess, and consider my

actions carefully” (P5, Path). Several noted that this shift toward

planning reduced frustration, stating that “the task was much less

frustrating” (P15, Path) when a stable future position was visible.

We interpreted this pattern as showing that prediction improved

control because participants could plan their movements instead of

constantly correcting them.

The subtheme system transparency captures situations where

visualizations clarified the robot’s behavior but still did not provide

the clear future position needed for confident control. Participants

valued cues about timing and possible drift but found them difficult

to turn into reliable action. Some reported that rotationwas easier to

judge, noting that “during rotation it was clearer when the rotation

would finish” (P12, Network). Others used the Envelope to assess

risk, explaining that “you can see if the robot would hit a rock”

(P24, Envelope). Despite this, participants stressed that these cues

did not help them steer, stating that “it makes me understand what

will happen but it’s not supportive of controlling the robot” (P2,

Network). When the visualization felt too spread out to act on, some

focused on a single point to keep it usable: “in the end I mainly

looked at the middle corner of the yellow surface” (P12, Envelope).

We understood this as transparency improving understanding, but

without a clear future position to guide action, it could not support

effective control.

Theme 2: making information actionable. This theme cap-

tures how participants experienced control as something they had

to work out themselves when the system no longer showed a clear

future position. Participants repeatedly described receiving infor-

mation they could not act on until they transformed it into spatial

expectations. This shift made control a mental task: instead of

responding to a predicted outcome, operators had to create that

outcome through their own judgment. We interpreted this as a

pattern where prediction shifted to the operator, requiring them to

build the robot’s future position from their own reasoning rather

than from the video feed. The subthemes show how operators han-

dled this shift either by converting non-spatial information about

the robot’s state into a future position, or by creating that position

themselves when the system offered no information at all.

The subtheme translation demand captures cases where par-

ticipants converted non-spatial cues into spatial predictions. They

described the mental load directly: “I had to multitask more in an-

alyzing the arrows I pressed and should press in the future” (P21,

Network); “this condition required more mental input as I was fo-

cused on timing my inputs” (P24, Network). Some improved with

practice: “At the start it seemed very bad, but I learned through-

out” (P16, Network). Others used calibration strategies: “I tested

in the training phase what the distance or the angle is for a full

bar” (P8, Network). But translation came with tradeoffs: “I felt like

I could be more precise but anticipated uncertain terrain less, as
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this required me to be more focused” (P5, Network). For some, it

produced distraction: “The visualization made it more confusing,

it added a level of distraction” (P20, Network), or was only useful

reactively: “I only really looked at this when I had already ended up

in a problematic situation” (P12, Network). We interpret this as a

case of resource competition: the mental effort required to translate

these cues consumed the attention that operators otherwise needed

to plan ahead.

The subtheme internal generation captures cases where par-

ticipants constructed predictions entirely from internal resources

when no external cue existed. Some formed workable strategies:

“imagining a ‘ghost car’ it was easy to predict where the robot would

turn” (P2, Baseline); “I would turn a certain amount of time and

hence ‘pre-fire’ that input if I anticipated that I would need to turn”

(P5, Baseline). Others adapted over time: “After some time I learned

to think ahead for my robot” (P16, Baseline). But internal generation

was fragile. Environmental uncertainty disrupted predictions: “I

noticed that it was harder to overcome uncertain terrain when in

this situation” (P5, Baseline); “I had trouble anticipating difficult

terrain” (P5, Baseline). Some reported abrupt failures: “even when

at some point I thought I ‘mastered’ the actions to compensate

the delay, I just ‘got stuck”’ (P11, Baseline). Others noted the full

burden of unsupported control: “No visualization of the delay made

it much more difficult to interpret” (P22, Baseline). Still, some de-

scribed creative effort when support was absent: “I realized that

the system would not provide me any help and that it was ‘all on

me’ inciting me to be more creative” (P5, Baseline). We interpret

this pattern as showing that internally generated predictions can

support control, but they are fragile and quickly lose reliability

when the environment becomes uncertain.

6 Discussion

Our findings show that predictive support improves delayed teleop-

eration only when the visual cues externalize uncertainty in a form

that directly matches operators’ control demands. As Moniruzza-

man et al. [39] note, most predictive displays provide deterministic

future-state estimates and rarely incorporate uncertainty or differ-

entiate its sources. We addressed this gap by decomposing delay

into communication, trajectory, and environmental uncertainty

and comparing visualizations that externalize each facet. Only Path

improved task completion time and consistently reduced cognitive

load, whereas Network and Envelope did not show comparable

performance effects. These results indicate that predictive support

becomes effective only when the visualization aligns with the oper-

ator’s control demands.

Effective control under delay relies on the operator’s ability to

visualize the robot’s future position before committing to an input.

This finding echoes Louca et al. [34], who identify predictable for-

ward behavior as a prerequisite for maintaining operator trust. The

fundamental challenge here is that operators must act before feed-

back arrives, meaning control is only viable when the future state

is explicitly shown rather than inferred. As one participant noted,

“the feedforward provided by the path visualizations helped me

adapt my actions” (P11). This confirms feedforward theory, which

suggests that making the outcome of an action visible narrows

Norman’s gulf of execution [45, 60]. By explicitly projecting these

spatial consequences, the Path visualization bridged this gap and

enabled a shift from reactive to proactive control.

Comparisons across conditions reveal that predictive cues are ef-

fective only when they minimize the cognitive effort of converting

information into spatial control. While the Network visualization

clarified timing, it forced operators to convert temporal cues into

spatial expectations, resulting in continued reliance on reactive

strategies. Similarly, the Envelope provided spatial bounds that

were useful for monitoring risk, but often too broad or physically

unrealistic to guide steering. Because it supported error detection

without offering a committed trajectory, the Envelope visualization

reduced subjective workload but failed to improve control perfor-

mance. This pattern supports findings that mismatches between

prediction and outcome can undermine trust [30]: in this case, the

Envelope visualization made uncertainty visible but not actionable,

creating a critical gap between what participants understood and

what they could actually control.

Analysis of reactive behavior reveals that operators pause not

because of general uncertainty, but specifically to compensate for

missing spatial prediction. While pause durations remained stable

across all conditions, the frequency of pauses spiked whenever the

interface failed to show a committed trajectory. Lacking external

support, participants were forced to rely on fragile internal strate-

gies, such as mentally simulating a “ghost car” to anticipate the

robot’s path. However, these internal models often failed when ter-

rain unpredictability introduced deviations the operators could not

foresee. This suggests that the Path visualization succeeds because

it functions as a robust, externalized version of the mental model

operators struggle to build during training. By directly displaying

this action-outcome mapping, the system removes the cognitive

burden of internal simulation, ensuring control remains stable even

when environmental conditions shift.

These results converge on an actionability gap: predictive cues

improve control only when they directly specify the future state

operators must act upon. While the Network and Envelope visual-

izations provided accurate data, they forced operators to perform

demanding mental calculations to extract a driveable path. The Path

visualization eliminated this cognitive tax by aligning the display

with the spatial decisions required for navigation. This advantage

becomes crucial as delays extend into the two-to-ten-second range

where direct control remains feasible [7]. As delay increases, the

lookahead window grows and internal prediction becomes less reli-

able. Consequently, effective teleoperation under significant delay

requires shifting focus from visualizing the mechanics of uncer-

tainty to projecting the clear, committed trajectory that enables

operators to act.

Our findings reinforce a broader implication for delayed teleop-

eration interfaces: predictive cues should stay tightly coupled to

the spatial decisions operators must make, which in practice means

keeping an intended Path projection as the primary feedforward

and navigation reference. However, in real deployments, especially

over missions with longer delays, the reliability of this preview

will drift as terrain, traction, and robot dynamics change. Rather

than treating the projected Path as a fixed “best guess,” systems

can keep it adaptive by continuously re-validating the predicted

motion against incoming state estimates and terrain cues available
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to the robot, such as slope, roughness, or likely slip. Reduced con-

fidence can then be reflected directly in the same Path projection

by shortening the preview horizon or deemphasizing less reliable

segments, so that what remains visible stays driveable and aligned

with what the operator is trying to achieve next. This supports a

simple planning-update model in which the interface repeatedly

recomputes the predicted Path, estimates near-future risk, and ad-

justs how far ahead it provides a committed reference over time.

Such continuous feasibility checking is already common in field

robotics, for example in planetary navigation [47], and provides a

concrete route toward maintaining effective operator planning un-

der prolonged and potentially increasing environmental instability.

Overall, the findings demonstrate that simply visualizing uncer-

tainty is insufficient for effective control under delay. Predictive

cues must match the representational form of operator decisions.

While foundational work on predictive displays [3, 25] validated the

utility of trajectory visualization, it largely treated delay as a uni-

tary problem. Our decomposition clarifies the mechanism behind

those early successes: trajectory prediction works not because it

provides more information, but because it ensures representational

compatibility between the interface and the task. Although tim-

ing and environmental information offered valid data, they forced

operators to perform the cognitive labor of interpreting what this

information meant for the robot’s future position. This extra effort

prevented valid information from supporting a shift to proactive

control. In this sense, our findings extend existing feedforward

taxonomies [64] by establishing a boundary condition: in spatial

control tasks, effective predictive displays must externalize the spe-

cific future state that operators can directly act upon, rather than

merely exposing the underlying mechanics of uncertainty.

7 Limitations and Future Work

This study employed a fixed 2.56 s round-trip delay to create a sta-

ble experimental baseline, isolating operator performance from the

variability introduced by jitter, buffering, and other forms of fluctu-

ating delay. While real-world communication links often exhibit

such variability, understanding how operators manage a consistent

delay is a prerequisite for understanding how they respond when

that delay begins to fluctuate. Our results therefore separate the

cognitive effects of delayed feedback from the effects of its vari-

ability, providing a controlled foundation for future evaluations in

which delay changes over time. Demonstrating that spatial feedfor-

ward resolves the cognitive challenges of a fixed delay establishes

the basis for examining how predictive support performs when the

communication delay becomes variable.

Our simulation used static terrain to maintain reproducibility

while evaluating the three facets of uncertainty. Real deployments,

however, often involve changing terrain conditions, and other ac-

tors or systems may continue to move during the communication

gap. Under such circumstances, reactive “move-and-wait” behavior

fails more fundamentally: by the time delayed feedback arrives,

the environment or the positions of other agents may have shifted,

making the delayed camera view an unreliable basis for action.

The static environment allowed us to verify how the visualizations

function, but increased environmental variability and independent

movement will widen the gap between reactive and proactive con-

trol. As these factors grow, timely action becomes essential for

maintaining stable operation under delayed feedback.

Our participant pool consisted of novices, which differs from

operational contexts where experienced teleoperators develop in-

ternal models tuned to familiar delay conditions. Prior work shows

that these internal models remain vulnerable when delays deviate

from what operators have learned: Louca et al. [34] report that even

experienced operators required additional operating time to adapt

when an unexpected delay fault was introduced. This indicates that

robustness to delay is conditional rather than absolute. External-

ized trajectory prediction therefore provides a stabilizing reference

for both novices and experts when the communication delay or

environmental conditions fall outside their learned range.

Finally, while we measured task completion time and perceived

workload to evaluate immediate control performance, we did not

assess longer-term constructs such as situational awareness, trust,

or attention allocation. Our findings with the Envelope visualiza-

tion show that visualizing environmental uncertainty does not

necessarily translate into improved operator confidence or control.

Future work should therefore examine how committed trajectory

predictions, such as those in the Path visualization, influence trust

calibration and mitigate the uncertainty loops that arise during

extended remote operation.

8 Conclusion

Communication delay separates operator input from robot feed-

back and forces operators to rely on prediction rather than per-

ception. We examined this problem by distinguishing three facets

of uncertainty created by delay: communication, trajectory, and

environmental. We then evaluated visualizations that externalize

each facet. In a controlled study with a fixed 2.56 s round-trip delay,

only the Path visualization, which displayed near-future motion

as a committed trajectory, reduced task completion time, lowered

perceived cognitive load, and decreased reliance on reactive “move-

and-wait” behavior. The Envelope visualization reduced perceived

cognitive load but did not produce comparable performance gains,

and the Network visualization showed no measurable improvement

beyond delayed-video feedback alone. These findings show that

simply visualizing uncertainty is not enough. Predictive cues must

align with the spatial decisions operators need to make. For direct

teleoperation under delay, showing the trajectory the robot will

follow makes it clear where the robot would end up, which emerges

as the most effective feedforward strategy for restoring proactive

control.
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A Thematic Analysis Codebook

Table 2: Thematic analysis codebook, including code definitions, inclusion and exclusion criteria, and example participant

responses. Exclusion criteria were defined tominimize overlap between related codes and to support consistent code application.

The examples consist of participant responses that were assigned to the corresponding code.

Code Inclusion Criteria Exclusion Criteria Examples

current

state info

Referring to information provided by the visu-

alization about the robot’s current condition or

situation.

“It was useful to know that the robot

would stay in between the yellow parts.”

future

outcome info

Referring to information provided by the visual-

ization about what the robot will do next, how

its movement will end, or where the robot will

end up after an input.

Exclude cases describing the partici-

pant’s own prediction of the robot’s

behavior rather than information pre-

sented by the visualization.

“The visualization increasing in size

made it clear how far the robot would

be after the delay, which worked very

well.”

anticipate

behavior

Predicting, foreseeing, or mentally projecting

the robot’s future movement.

“Seeing the different inputs being sent,

I could plan ahead to combine inputs.”

visualization

reduction

Explicitly describing using only part of the avail-

able visualization, including focusing attention

on a specific visual element rather than the full

display.

“I mainly looked at the middle corner

of the yellow surface.”

control difficulty Explicitly stating difficulty operating, directing,

or executing intended robot movement.

Exclude statements describing difficulty

specifically related to turning behavior.

“It was harder to control the robot, even

when at some point I thought I ‘mas-

tered’ the actions.”

turning difficulty Explicitly stating difficulty turning the robot. “I struggled even more with rotation in

this version.”

error

correction info

Explicitly stating that the visualization helped

detect, understand, or correct mistakes that oc-

curred during navigation or control.

“It clearly indicated when I had to go

back because I wouldn’t make the turn.”

task difficulty Explicitly stating that the task became easier or

harder due to something in the visualization or

the interaction.

“The lack of any feedforward made the

task harder.”

temporal effect Explicitly describing how delay, or temporal

mismatch affected control, decisions, or perfor-

mance.

“The delay really affects the decisions

made during the robot maneuvers.”

terrain effect Explicitly describing how terrain or surface fea-

tures affected navigation or performance.

“I crashed into some hills that I did not

expect the robot to struggle with.”

learning effect Explicitly stating that skill, familiarity, or con-

fidence improved due to prior exposure to the

task, robot, or interface.

“I knew what task I needed to perform

because of the previous condition.”

emotion Explicitly describing an emotional reaction in

response to the visualization, the task, or the

robot’s behavior.

Exclude emotional reactions that are

clearly attributable to performance is-

sues, control difficulties, timing effects,

or terrain-related effects.

“I made it to the end, but the way there

was terribly frustrating.”
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