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Figure 1: Three predictive visualizations for delayed teleoperation. Left: Network visualization shows when commands will
take effect. Middle: Path visualization projects the robot’s intended trajectory. Right: Envelope visualization extends the path
with worst-case deviation bounds indicating possible divergence from environmental disturbances.

Abstract

Delays in direct teleoperation decouple operator input from robot
feedback. We frame this not as a unitary problem but as three facets
of operator uncertainty: (1) communication, when commands take
effect, (2) trajectory, how inputs map to motion, and (3) environmen-
tal, how external factors alter outcomes. We externalized each facet
through predictive visualizations: Network, Path, and Envelope.
In a controlled study with 24 participants (novices in telerobotics)
navigating a simulated robot under a fixed 2.56 s round-trip delay,
we compared these visualizations against a delayed-video baseline.
Path significantly shortened task time, lowered perceived cognitive
load, and reduced reliance on reactive “move-and-wait” behavior.
Envelope lowered cognitive load but did not significantly reduce
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reactive behavior or improve performance, while Network had no
measurable effect. These results indicate that predictive support is
effective only when trajectory uncertainty is externalized, enabling
operators to move from reactive to more proactive control.
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1 Introduction

Telerobotics has long served as a way to extend human action into
environments that are dangerous or inaccessible, ranging from han-
dling radioactive material to military usage and exploring planetary
surfaces [20, 23, 35, 40]. Rather than replacing people, robots aug-
ment human capability [17, 21, 54]: they provide mobility, precision
and endurance, while humans contribute perception, judgment, and
adaptation. This complementary relationship keeps human intelli-
gence at the center of critical tasks and has made remote operation
indispensable in high-stakes domains such as disaster response and
planetary exploration.

The value of this partnership relies on prompt feedback between
operator and robot. With increasing distances, communication de-
lay becomes a defining constraint for interaction: round-trip com-
munication delays from hundreds of milliseconds to many seconds
decouple command and feedback. This leaves operators uncertain
about when inputs take effect and whether their inputs lead to the
expected outcomes.

Increasing levels of autonomy can mitigate the impact of de-
lay, particularly in structured tasks where actions and outcomes
are predictable [38, 61]. However, even advanced systems require
oversight [39], and humans remain more flexible in unpredictable
environments [49]. In these settings, delay forces operators to act
under temporal uncertainty, where the timing and consequences of
their actions are no longer immediately observable. Even modest
delays of around 300 ms can degrade performance by misaligning
operator expectations with actual system behavior [8, 26, 42]. In-
terfaces must therefore support humans in maintaining effective
control under delay rather than removing them from the loop.

To understand why delays are so disruptive, it is useful to con-
sider how operators normally learn to control a robot under delay-
free conditions. In these settings, they gradually build a mental
model of how input commands translate into robot behavior. For
instance, pressing a forward key moves the robot a specific dis-
tance, or a turn input results in a predictable rotation. This control-
to-motion mapping depends not only on kinematics but also on
environmental factors such as terrain roughness or wheel slippage.
Over time, operators refine their internal model through observa-
tion and adaptation, even accounting for visual cues such as soft
soil or obstacles that signal potential changes in system response.

Delay fundamentally disrupts this calibration process. It obscures
the immediate consequences of each action, weakens the temporal
link between input and feedback, and slows operators’ ability to
adjust their inputs. This makes it harder to refine a mental model
of the system, especially in dynamic or uncertain environments. As
a result, effective control under delay becomes not only a technical
challenge, but a cognitive one [12, 27, 56].

One well-established mitigation strategy is “move-and-wait” be-
havior [14], where operators issue a command and then pause until
delayed feedback confirms the result. While stabilizing, this behav-
ior increases task time and cognitive load. From a cognitive perspec-
tive, temporal uncertainty forces operators to wait before feedback
resolves, disrupting perception, comprehension, and projection of
system state [12] and widening Norman’s gulfs of execution and
evaluation [45], making it harder to know whether an action was
effective or to anticipate the next state.
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Technical countermeasures, such as network compensation, can
reduce network variability, yet operators remain responsible for
control under delay. Framing delay as temporal uncertainty rather
than a communication defect shifts design focus from elimination
to adaptation, motivating interface techniques that externalize the
timing, consequences, and reliability of control actions [5, 22].

One long-standing interface approach to temporal uncertainty
is the predictive display. These systems compute and visualize the
robot’s near-future state [3, 4, 11]. By projecting likely behavior,
predictive displays clarify the link between action and feedback
and help operators anticipate outcomes [9, 37]. Predictive displays
embody feedforward [60], providing perceptual cues that support
projection in Endsley’s model of situational awareness [12] and nar-
rowing Norman’s gulfs of execution and evaluation [45]. At design
time, tools such as Choreobot [58] help identify where feedforward
should be placed along task timelines to improve intelligibility in
human-robot interaction.

While predictive displays have demonstrated clear benefits in
helping operators anticipate delayed responses, most have treated
delay as a single, monolithic challenge [39]. However, delayed tele-
operation exposes operators to multiple, interacting forms of uncer-
tainty: when actions will take effect (communication delay), how
issued commands will unfold over time (trajectory uncertainty),
and how the environment will alter or disrupt expected outcomes
(environmental uncertainty). Treating delay as a unitary phenome-
non obscures how these sources interact and how interface support
should be tailored to each.

Studying how interfaces can address these distinct uncertainties
requires operating at a delay that is both cognitively challenging
and still feasible for human-in-the-loop control. Delays in the two-
to-ten-second range are known to mark a transition zone in which
direct control becomes fragile and operators must increasingly rely
on predictive or supervisory strategies [7]. We position our study at
the lower bound of this intermediate range, using a 2.56 s round-trip
delay, equal to the theoretical minimum for Earth-Moon communi-
cation [41]. This allows us to probe how uncertainty-aware support
performs under demanding but still interactive conditions, which
establishes a controlled, reproducible baseline: if addressing uncer-
tainty meaningfully assists operators here, it provides a principled
starting point for identifying when such support might begin to
break down, creating clear opportunities for future work on longer
and more variable delays.

To investigate how uncertainty can be externalized in practice,
we introduce three visualization strategies that each target one
of the identified uncertainty sources. The Network visualization
reveals the timing of command execution, clarifying when inputs
will take effect. The Path visualization projects the robot’s expected
motion based on queued operator inputs. The Envelope visualization
communicates how environmental variability may cause deviations
from that projection. Together, these designs allow us to examine
how different uncertainty representations support operators’ ability
to plan, predict, and act under delayed feedback.

Therefore in this paper, we contribute:

(1) A decomposition of delay as operator uncertainty, distin-
guishing three key facets that affect control in delayed tele-
operation: communication, trajectory, and environmental
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uncertainty. This extends prior work on predictive displays,
which has often treated temporal delay as a single, unified
problem.

(2) Three visualization techniques that explicitly externalize
these uncertainty facets: a Network visualization to expose
command timing, a Path visualization to project predicted
motion, and an Envelope visualization to visualize potential
deviations caused by environmental variability.

(3) A controlled study with 24 participants navigating a mobile
robot under a fixed round-trip delay (2.56 s). We compared
the three visualizations to a delayed-video baseline in terms
of task performance, reactive behavior, and perceived cogni-
tive load.

(4) Empirical evidence that trajectory-based feedforward (Path)
significantly improved control performance by reducing task
time, supporting more proactive input, and lowering cog-
nitive load. The Envelope visualization reduced perceived
cognitive load but did not yield stable performance bene-
fits, while the Network visualization showed no measurable
improvement over the baseline.

2 Related Work

Early work by Ferrell and Sheridan [15, 54] established a frame-
work for human-robot control, distinguishing direct, shared, and
supervisory modes. As robots moved from tethered to remote en-
vironments, physical separation introduced communication delay.
Every command and sensor update must traverse a link, breaking
the immediate coupling between action and feedback and making
it harder for operators to maintain a reliable mental model of the
robot’s state.

2.1 Communication Delays in Telerobotics

All mobile telerobotic systems introduce communication delay,
whether on Earth or in space [44]. On Earth, applications such as
search and rescue [33, 40] or mining [57] encounter delays ranging
from 100 ms to several seconds depending on network infrastruc-
ture. In space, the issue is more severe because communication
is bounded by the speed of light: the Earth-Moon distance im-
poses a minimum round-trip time of about 2.56 s [1, 41]. Actual
operational figures are higher; for example, NASA’s VIPER rover
is expected to experience 6 s to 10 s round-trip delay via the Deep
Space Network [16]. Beyond these physical limits, real networks
introduce variability through processing, routing, and bandwidth
constraints [55, 63]. Many laboratory studies simplify experiments
by treating delay as a fixed constant [3, 36, 37], although in practice
operators must cope with both predictable and variable delay [9].
Delay also affects domains such as surgical teleoperation [29, 46, 48]
and UAV control [65], where it reduces precision and safety. While
this paper focuses on mobile teleoperation, these examples demon-
strate that delay is a pervasive challenge across telerobotics.
Delay also alters operator behavior. Ferrell’s experiments [14]
showed that under delay, operators adopt a “move-and-wait” be-
havior: issue a command, wait for confirmation, then act again. The
strategy reduces instability but increases task time in proportion
to the delay [10, 13]. Similar patterns are reported in space tele-
operation, where delays beyond human cognitive timescales force
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cautious, stepwise control [31]. “Move-and-wait” has therefore be-
come a common benchmark for evaluating new interfaces. These
adaptations demonstrate that delay is not only a systems constraint
but also a cognitive challenge [56].

2.2 Cognitive Effects of Delay

Empirical studies show that communication delay affects both con-
trol and cognition. Even relatively short delays of about 300 ms
can create mismatches between operator expectations and the ac-
tual robot state [26, 42], increasing errors and perceived cognitive
load. Experiments in lunar construction confirm that delay reduces
control accuracy and increases mental demand compared to zero-
delay conditions [53]. Dybvik et al. [11] similarly find that vehicle
teleoperation under delay diminishes situational awareness and
substantially increases perceived cognitive load. Comparable effects
are reported in surgical teleoperation [29, 48] and in autonomous
vehicle teleoperation [56], where delay undermines operator confi-
dence and adds cognitive strain.

The mechanism underlying these effects is a disruption of situa-
tional awareness. Operators perceive the environment only through
cameras and displays; when feedback is delayed, their mental model
of the remote state is updated with stale information [3, 27]. This
temporal misalignment introduces uncertainty about the robot’s
actual state. Prior work shows that uncertainty can accumulate
even when operators act correctly, forming “uncertainty loops” that
erode trust and performance [32]. Interfaces that make a robot’s
uncertainty visible can help preserve operator agency and deci-
sion quality [52], but poorly designed uncertainty visualizations
risk confusion or mistrust [5, 22]. In telerobotics, delay exacer-
bates these issues by forcing reliance on memory and prediction;
in extraterrestrial contexts, sparse visual cues further intensify the
burden [53].

These outcomes align with established cognitive theory. In Ends-
ley’s model, delay disrupts perception and comprehension, weaken-
ing projection of future states [12]. In Norman’s framework, delay
widens the gulfs of execution and evaluation: Operators must issue
commands before the effects of their previous inputs become visi-
ble, while delayed feedback prevents timely confirmation. [45]. To-
gether, these accounts underscore the need for interface techniques
that make uncertainty visible, sustain awareness, and support an-
ticipation under delay.

2.3 Delay Mitigation Strategies

Various control strategies have been proposed to mitigate the ef-
fects of communication delay. Surveys highlight control-theoretic
approaches that can improve stability and transparency of control
under communication delay [13, 26]. Their performance, however,
depends on accurate delay models and careful tuning, and they do
not focus on the operator’s temporal uncertainty when directly
interacting with the robot [13, 26]. A line of research targets the
perception side via predictive displays, which render the robot’s
near-future state from current commands and motion models to
clarify the action to outcome loop [3, 4, 51]. Building on early work
that introduced wire-frame and trajectory projections [3, 4] and sub-
sequent variants such as ghost overlays [25], trajectory lines [18],
and hybrid approaches [28, 66].
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Moniruzzaman et al. [39] survey predictive displays extensively
and report that they can reduce perceived communication delay, yet
most implementations remain limited to first-order state predictions
like a position or direction, and rarely represent uncertainty or the
probabilistic nature of future events; mismatches between predic-
tions and outcomes can undermine operator trust, consistent with
broader findings on automation trust [30]. Consequently, existing
predictive displays often emphasize what will happen without dif-
ferentiating the distinct uncertainty sources that shape and support
direct operator control. Our work addresses this gap: we decompose
operator uncertainty into when commands take effect (communi-
cation), how input maps to motion (trajectory), and what external
factors may alter outcomes (environmental), and we systemati-
cally evaluate facet-specific visualizations under fixed upper-bound
delay.

Predictive displays are feedforward interfaces [60] that commu-
nicate the likely, but in this case not guaranteed, consequences of
an action before execution, thereby narrowing Norman’s gulf of
execution by making action-outcome relations visible [45]. Recent
work formalizes the design space of feedforward cues: Yu et al. [64]
characterize variations in level of indirection (explicit, implicit,
abstract) and update strategy (discrete, continuous, autonomous);
trajectory overlays instantiate implicit feedforward (showing the
future indirectly), whereas ghost projections exemplify explicit
feedforward (depicting the future directly and unambiguously) [2].
Complementing these taxonomies, Van Deurzen et al. [58] provide
a framework and dashboard that help developers to include feed-
forward for working with (semi)-autonomic robots, highlighting
where and when predictive cues are required, desired, or optional.

3 UNITE: A Teleoperation Simulation and
Control Environment

To study teleoperation under delay, we developed UNITE, a Unity-
based simulation environment. It provides reproducible conditions
while allowing configurable manipulation of uncertainty factors
such as noise, delay, and terrain. This ensures that visualization
effects can be evaluated independently of uncontrolled variability.

3.1 Robot Dynamics

In UNITE, robot dynamics are implemented as modular compo-
nents. This means that the motion equations and physical limits
of the robot are encapsulated in interchangeable models. For our
study we used the Turtlebot3 Waffle Pi!, a differential-drive robot,
with kinematics based on its wheelbase and motor specifications.
To support more precise control in our environment, we reduced
the maximum rotational speed from 1.82rads™! to 0.30 rad s™!. Be-
cause dynamics are modular, different robots can be loaded without
altering the interface details.

3.2 Noise Model

To approximate imperfections in real robot motion, we implemented
a deterministic noise model aligned with the kinematics of a differ-
ential drive robot. This model introduces variation in the robot’s
motion by adjusting the commanded left and right wheel velocities

!https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
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according to six uncertainty sources, applied before each update of
the robot state:

(1) Wheel slip: traction is reduced on rough terrain or at higher
speeds, lowering effective velocity.

(2) Motor variation: small, time-varying differences between the
left and right motors introduce drift.

(3) Terrain vibration: uneven ground causes oscillations that
momentarily disrupt wheel-ground contact.

(4) Encoder noise: measured wheel velocities include small inac-
curacies, simulating sensor error.

(5) Slope bias: when traversing inclines, load shifts unevenly
across wheels, producing asymmetric motion.

(6) Wheel performance dynamics: time-varying factors including
thermal effects, material deformation, and debris accumula-
tion create oscillating differences in effective wheel perfor-
mance.

Effects (3—4) are generated using Perlin noise, a smooth noise
function that produces gradual rather than abrupt changes [50].
Unlike random noise, which jumps unpredictably, Perlin noise cre-
ates continuous patterns over space and time, which better matches
how disturbances such as terrain roughness or motor noise occur.
Effects (1-2, 4, 6) are based on velocity data, whereas effects (3, 5)
are based on positional data.

The noise model is seeded deterministically so identical inputs
produce identical deviations across conditions. Its parameters were
iteratively calibrated to produce clear, realistic trajectory variations
representative of normal rough-terrain motion. The role of this
approximation is to introduce enough variability for environmental
uncertainty to matter, while keeping that variability constrained
so the visualization conditions (see Section 4) can be compared
reliably.

3.3 Fixed-delay model and implementation.

To isolate the effect of delayed feedback, UNITE applies a constant
2.56 s round-trip delay. Real networks often have variable delay,
which can cause jitter, buffering, and dropped frames. This makes it
harder to tell whether performance differences stem from the delay
itself or from its fluctuations [42, 63]. A fixed delay removes this
ambiguity. With a stable communication delay, we can compare
how each visualization supports operator control [5, 22].

A fixed delay also reflects a practical abstraction. When delay
varies within a known and bounded range, the system can treat
the largest observed value as its effective delay (see Figure 2). This
creates a consistent reference value for applying delay in the con-
trol loop. In UNITE, the fixed value is 2.56 s, which corresponds
to the theoretical lower bound round-trip time for Earth to Moon
communication [41], providing a concrete reference point for the
scale of temporal separation implemented in the system. By enforc-
ing a fixed delay, all interface conditions operate under the same
temporal separation between action and feedback.

Technically, the delay is realized through a time-stamped com-
mand queue: inputs are stored with their execution times and ap-
plied only after 2.56 s. During this waiting period, queued com-
mands are also used to generate the lookahead trajectories (Sec-
tion 4), ensuring consistent delayed dynamics across all visualiza-
tion conditions.
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—— Real-world variable delay
= = Fixed delay approximation used in our study
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Time (s)

Figure 2: Round-trip communication delay. Real-world de-
lay fluctuates over time (blue). In UNITE, variability was
replaced by a fixed upper bound (dashed red), excluding the
fluctuation margin (shaded).

3.4 Environment Generation

Two terrains were generated in advance from publicly available
displacement maps (Moonscapes?). One terrain is used for training,
and the other serves as the navigation environment. Both terrains
remain fixed within the simulation, ensuring that rendering, physics
integration and terrain-aware noise operate over consistent surface
geometry.

The terrain supports two roles in the system. First, it provides
the visual surface onto which trajectory predictions are projected
so that visualizations follow local ground topology (see Section 4).
Second, it acts as the collision and support surface for robot motion.
The robot’s vertical position is updated via raycasting, while slope
and roughness are estimated in real time using a three-point trian-
gulation method. These terrain-derived values drive the position-
based components of the noise model (effects 3 and 5), ensuring
that disturbances originate from structured features of the surface
rather than arbitrary perturbations.

To approximate lunar and space conditions, UNITE uses a single
directional light (sun analog), no atmospheric scattering, and a
dark sky. Figure 3 shows the simulated robot traversing one of the
generated terrains. For clarity in this paper, lighting in Figure 3 was
adjusted to make details of the robot and terrain more visible.

4 Externalizing Uncertainty in Teleoperation
Interfaces

Effective teleoperation requires operators to form a reliable mental
model of how their inputs affect robot behavior. Under delay, this
becomes increasingly difficult: the temporal gap between input
and feedback obscures the consequences of each action, weakening
the ability to predict outcomes or adapt to changing conditions.
These difficulties, however, originate from multiple sources, includ-
ing ambiguity about when commands are enacted (communication
uncertainty), how inputs translate into motion given the robot’s
dynamics (trajectory uncertainty), and how environmental condi-
tions such as terrain or slippage may alter the robot’s response
(environmental uncertainty).

2Moonscapes 8K displacement maps, available at: https:/ftp.mantissa.xyz/resources/
moonscapes/
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Figure 3: Simulated robot on a lunar-like terrain. Terrains
were generated from displacement maps and used for both
rendering and physics simulation.

uncertainty trajectory uncertainty
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The Operator Site The Remote Environment
Figure 4: Control loop in delayed teleoperation. Operator
inputs pass through the interface, network delay, and com-
munication channel before reaching the robot, with delayed
video feedback returning to the operator. This introduces
three uncertainties: when input takes effect (communication),
how input maps to motion (trajectory), and what external
factors do to the outcome (environmental).

To support operator reasoning under delay, we designed three
visualizations that each target one of these uncertainty sources (see
Figure 4). The Network visualization makes the timing of command
execution visible, externalizing communication delay. The Path vi-
sualization projects the robot’s expected trajectory based on current
input, clarifying the mapping between control and motion through
feedforward prediction. The Envelope visualization builds on the
same predictive model but augments it with a visual representation
of potential deviations caused by environmental variability. By ex-
ternalizing distinct facets of uncertainty, these visualizations aim
to support reduced reliance on reactive “move-and-wait” behavior,
reduce cognitive load, and help operators maintain an accurate
and adaptable mental model, even when immediate feedback is
unavailable.

4.1 Network Visualization

The Network visualization targets communication uncertainty:
the ambiguity about whether a command has been sent, and when
its effects will become visible in the delayed camera feed (Figure 5).
Under delay, this uncertainty forces operators to rely on mem-
ory or guesswork to keep track of input timing, which weakens
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window

(b) Schematic of externalized command pipeline.

Figure 5: Network visualization. (a) Simulation environment
with timelines overlaid at the bottom of the interface, show-
ing pending input commands as blocks progressing toward
execution. (b) Schematic view illustrating the externalized
command pipeline across four input channels, clarifying the
relationship between operator actions and delayed robot re-
sponses.

their ability to coordinate actions effectively. For example, when
approaching a turn, the operator must anticipate the delay and
issue the turn command early enough for the robot to respond in
time. To reduce this ambiguity, the Network visualization applies
established HCI principles of system transparency and status visi-
bility [43, 45]. It externalizes the command pipeline by visualizing
the delay between input and execution, making command timing
explicit and allowing operators to anticipate when their actions
will take effect.

The Network visualization presents four parallel timelines, one
for each arrow key, aligned spatially to match the layout of the
physical keyboard. This spatial arrangement follows Norman’s
principle of natural mapping [45], reinforcing intuitive associations
between the user actions and the visualizations on the timelines.
Each timeline functions as a communication channel, with the left
side representing the operator’s input, and the right side repre-
senting the robot’s execution point. When a control signal is sent
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(arrow is pressed), a green block appears at the left end of the cor-
responding timeline. The block’s length encodes the duration of
the keypress, and it animates rightward across the timeline, sim-
ulating the time it takes for the command to reach the robot, and
the video feedback to propagate back—corresponding to the fixed
communication delay (2.56 s). Once the block reaches the far end,
the command is assumed to have taken effect and is observable
in the delayed video feed. These timelines make the otherwise in-
visible delay visible and predictable. The steady animation speed
provides a rhythmic, perceptible timeline that allows operators to
offload timing calculations and anticipate when a command will
take effect. Overlapping commands are displayed sequentially on
their respective key channels.

Data Requirements. The visualization requires only input
timestamps, keypress durations, control mappings, and the known
fixed round-trip delay. It does not require access to robot pose,
motion data, or kinematic models. As such, it offers a lightweight
way to surface temporal uncertainty without introducing spatial
prediction.

4.2 Path Visualization

The Path visualization addresses trajectory uncertainty: the dif-
ficulty of inferring how input commands will translate into robot
motion under delay. Path visualization (Figure 6) does this by ren-
dering a prediction in real-time of how input could translate into
movements of the robot. Without explicit support, operators must
mentally simulate the robot’s motion dynamics, which becomes
increasingly error-prone as the delay grows. Such “predictive over-
lays” are an established design practice in vehicle interfaces (e.g.,
reversing camera path projections), where they help users antici-
pate the spatial outcome of steering. In delayed teleoperation, such
feedforward cues allow operators to predict the robot’s behavior
without waiting for delayed video feedback, thereby reducing the
cognitive effort needed to maintain situational awareness.

The visualization projects where the robot will move next by
applying an idealized motion model. It assumes perfect conditions:
no wheel slippage, no external disturbance, and no environmental
variability. The result is a feedforward prediction, an estimate of
the robot’s path if the current command were executed exactly as
intended. As shown in Figure 6, the interface overlays three trajec-
tory lines on the video feed: one for each wheel and a third through
the instantaneous center of rotation. These overlays update contin-
uously with input: forward keypresses extend the lines outward,
backward keypresses extend them inward, and left/right inputs
bend them accordingly. Each segment is drawn cumulatively, so
prior forward extensions remain visible when subsequent backward
inputs are added. The trajectory length scales with the duration
of keypresses and is capped by the fixed round-trip delay of 2.56 s,
which defines the maximum lookahead window.

Kinematic Model. Trajectory prediction is computed using
standard differential-drive kinematics: linear velocity v = (vp +
ur)/2 and angular velocity o = (vg — v)/d, where vy, and vg are
the left and right wheel velocities and d is the wheelbase. These
values are integrated forward in time to generate a continuous
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(a) Simulation view with trajectory projections.
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(b) Schematic of projected wheel and center trajectories.

Figure 6: Path visualization. (a) Simulation environment
view showing predicted wheel and centerline trajectories
projected ahead of the robot. (b) Schematic illustration of the
trajectory layout, highlighting left/right wheel paths and the
center reference line within the lookahead window.

pose trace that approximates the robot’s motion over the lookahead
window.

Data Requirements. Path visualization requires only three in-
puts: the robot’s current position, the user’s control commands,
and the wheelbase parameter. These values define a noise-free kine-
matic model that predicts the trajectory the robot would follow
under ideal execution. In our implementation, the position anchors
the prediction in space, the commands define wheel velocities over
time, and the wheelbase determines curvature. In our simulation,
the robot’s current position is obtained directly from the Unity
environment, control commands are captured from the keyboard
input system, and the wheelbase is defined by the TurtleBot3 model.
In real deployment, pose can be estimated via SLAM or GPS, user
inputs are available directly from the control interfaces, and robot
parameters are typically known from manufacturer specifications.
Importantly, the visualization shows intended motion, not actual
execution, reinforcing its role as a feedforward aid that supports
planning and prediction.

(a) Simulation view with envelope projection.
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(b) Schematic of projected envelope bounds.

Figure 7: Envelope visualization. (a) Simulation environment
with a translucent cone-shaped region indicating the worst-
case deviation envelope over the terrain. (b) Schematic illus-
trating the reference trajectory (center line) and bounding
curves that define the limits of possible deviation.

4.3 Envelope Visualization

The Envelope visualization addresses environmental uncertainty:
the variability in robot motion caused by environmental factors,
such as slippage, terrain conditions, motor noise, or other external
factors. The visualization extends the Path visualization: instead
of projecting a single trajectory, it visualizes a cone-shaped region
that represents the maximum possible deviation from the ideal
path, given a set of modeled disturbances including terrain slippage
and system noise (Figure 7). This visualization helps operators not
only anticipate the robot’s intended direction, but also reason about
how actual motion might diverge under uncertain environmental
conditions.

As shown in Figure 7, the envelope is rendered as a translucent,
cone-shaped region aligned with the robot’s apex point. The cen-
ter of the cone shows the ideal, noise-free trajectory (identical to
the Path visualization), while the left and right bounds mark the
maximum deviation under modeled disturbances. The envelope dy-
namically expands in both width and length as keypress duration
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increases, up to the limit imposed by the fixed round-trip delay of
2.56 s. The shaded region thus reflects the cumulative effect of un-
certainty over time. Importantly, this is not a probabilistic estimate,
it reflects a worst-case spread, guaranteeing that the actual trajectory
remains within the envelope under the modeled assumptions.

Kinematic Model. The model uses the same kinematic equa-
tions as the Path visualization (v = (vp +o0R)/2, w = (vg—vr)/d), but
modifies the input velocities to account for environmental distur-
bances. As detailed in the noise model (Section 3), six disturbances
are modeled: wheel slip, motor variation, terrain vibration, encoder
noise, slope bias, and wheel dynamics. While the simulation applies
these disturbances dynamically via seeded noise, the Envelope vi-
sualization instead uses deterministic upper bounds derived from
the same model parameters. These bounds are then propagated
through the kinematic equations to compute the largest possible
divergence from the intended trajectory. The adjusted velocities
(v}, vg) define the left and right envelope boundaries.

Data Requirements. In our simulation, the Envelope visualiza-
tion uses the robot’s current position (from the Unity environment),
the user’s control commands (from keyboard input), the wheelbase
(from the TurtleBot3 model). Disturbance parameters are sourced
from the simulation’s noise model (Section 3). In real-world settings,
obtaining reliable disturbance bounds is more challenging. Some
parameters—such as slope or surface roughness—can be inferred
from onboard sensors (e.g., LIDAR or stereo vision), while others,
like motor slippage or vibration, are harder to sense directly and
often require offline testing or empirical calibration. As such, prac-
tical deployment of this visualization would require careful tuning
of the uncertainty model.

5 User Study: Evaluating Visual Feedback for
Telerobotic Navigation with Delays

This study examines how the three different visualizations can
reduce operator uncertainty in the direct control of UGVs under
communication delay. The experimental task required participants
to navigate a bounded environment (see Section 3.4) as quickly as
possible. Accuracy was not measured independently, because the
environment was designed to constrain large deviations: cliffs and
boundaries prevented off-path driving and thus enforced a baseline
level of accuracy. This design allowed task completion time to
serve as the primary performance metric, ensuring that differences
across conditions reflected control efficiency under delay rather
than individual variations in speed—accuracy tradeoffs.

5.1 Study Objectives

The central challenge in delayed teleoperation is operator uncer-
tainty: delayed feedback obscures when commands take effect, how
they map to motion, and how environmental factors may alter
outcomes. Without support, operators fall back on reactive “move-
and-wait” control, which increases task time and cognitive load.

Our objective is to test whether externalizing the distinct facets of
uncertainty through feedforward visualizations can reduce reliance
on reactive control and improve direct teleoperation. This motivates
the following research question:
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What are the effects of the three facets of uncertainty on operator
performance and cognitive load under delayed mobile teleoperation?

To answer this question, we test two hypotheses:

H1: Feedforward visualizations reduce task completion time
under communication delay compared to delayed-video feedback
alone.

H2: Feedforward visualizations will reduce subjective cogni-
tive load under communication delay compared to delayed-video
feedback alone.

5.2 Participants

We recruited 24 participants (M = 26.1 years, SD = 6.5, range =
20-44; 14 men, 10 women). Non-binary/other and prefer-not-to-say
options were offered, although none were selected. All participants
were novices; experts in telerobotics were not included in the study.

Participants were recruited via the research lab’s mailing lists
and the research team’s personal networks. While this reflects a
convenience sample, we sought variation in gaming background, as
pilot observations suggested this might influence operator behavior.
Gaming background was self-reported on a five-point scale: never
(n = 7), less than once a month (n = 4), 1-3 times a month (n = 3),
weekly (n = 3), or several times per week (n = 7). For exploratory
analyses, we grouped participants into two categories: those who
reported gaming at least weekly (coded as high gaming experience,
n = 10) and those who reported less frequent or no gaming (coded
as low/no gaming experience, n = 14).

All participants provided informed consent prior to participation.
The study was approved by the university’s Social and Societal
Ethics Committee (SMEC). Participation was voluntary, with no
compensation, and participants were informed that they could
withdraw from the study at any time without consequence.

5.3 Setup and Apparatus

Participants used UNITE (see Section 3) to control a simulated
UGV in a lunar-terrain environment (see Section 3.4). UNITE ran
on a remote virtual machine (4 CPU cores, 8 GB RAM, 200 GB
SSD, 200 Mbit/s network). The simulation ran at 50 Hz physics
update and rendered at 120 FPS, streamed in real time applying a
communication delay. The interface was presented in a 2560 X 1360
px browser window on a 27 inch Dell UltraSharp U2717D monitor
(native resolution 2560 X 1440 px). Participants used a Logitech
MX Keys keyboard with numpad, which they were free to position
according to their preference.

We used a dual-window setup: one browser window hosted
the Qualtrics questionnaire, while the second window was used
for UNITE. The questionnaire window communicated with the
experiment server to trigger the loading of condition sequences
and to synchronize trial progression. UNITE continuously queried
the server for updates and transmitted trials back to the central
database on completion. All trial data was stored under unique
participant identifiers and linked to the questionnaire responses.
Questionnaires were hosted externally in Qualtrics, rather than
integrated into the Unity interface, to ensure consistency in survey
delivery, robust data export, and reduced development overhead.
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Figure 8: Completion rate calculation. The reference trajec-
tory was discretized into 101 waypoints from start (0%) to tar-
get (100%). A participant’s endpoint (red cross) was matched
to the closest waypoint (green dot), and its index defined the
completion rate.

5.4 Experimental Design

We used a within-subjects design: all 24 participants experienced
four conditions: a Baseline showing only the delayed video feed,
and three visualization conditions (Network, Path, Envelope). Order
was counterbalanced with a Williams Latin square [62], assigning
each of the four base sequences to six participants. The independent
variable was the visualization’s information level (see Section 4).
Dependent variables were completion time, perceived cognitive
load (adapted NASA-TLX), responses to the post-condition ques-
tionnaire, and reliance on reactive “move-and-wait” behavior.

Task performance was measured as (a) completion time, defined
as elapsed time from task start (click into the simulation window)
to reaching the target within 300 s, and (b) completion rate for un-
successful trials. Completion rate was the proportion of a reference
trajectory reached (Figure 8). This trajectory was derived from suc-
cessful attempts and discretized into 101 evenly spaced waypoints.
For each unsuccessful trial, the participant’s endpoint was matched
to the closest waypoint (Euclidean distance), and completion rate
was defined as its index divided by 100.

Reactive “move-and-wait” behavior was coded as pauses of at
least 2.56 s between inputs, matching the round-trip delay and
Ferrell’s definition [14]. Reduced reliance on reactive behavior was
coded as shorter intervals, indicating proactive input during motion.

Perceived cognitive load was measured with an adapted NASA-
TLX [24], all items scored 0-20. The frustration item was excluded
but captured in the final questionnaire for cross-condition compar-
ison. We used the Mental Demand item as a proxy for cognitive
load, following prior ergonomics and HCI work [19]. Additional
measures included Likert ratings of visualization effectiveness, self-
assessments of performance, efficiency, and mental model clarity.
The comparative questionnaire captured relative rankings and open-
ended feedback.

5.5 Procedure

Participants were seated behind a monitor. After a short study in-
troduction, they read an information sheet on data handling, ethics,
and voluntary participation, and gave informed consent. They then
completed a demographics questionnaire (age, gender, gaming ex-
perience) and received task instructions describing training and
study tasks, time limits (90 s training, 300 s study), and keyboard
controls.
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Each condition began in Qualtrics, which triggered the assigned
visualization. The experimenter switched to the simulation window,
where task instructions appeared. Input was accepted only after
participants clicked into the window, ensuring keyboard focus and
explicit awareness of task start.

Each condition included a short training task, followed by the
main task. Training familiarized participants with terrain and visu-
alization and lasted up to 90 s, ending automatically or via spacebar
if participants felt prepared.

The study task required navigating to a target area (green circle)
as quickly as possible within 300 s. The target was inspired by
Mars Perseverance goal-setting [59]. Participants were instructed
to drive forward to reach the path, which always began ahead of the
start position. The target was initially not visible; participants were
reminded to approach hills cautiously. Because the study examined
visualization under delay rather than path-finding, participants
could confirm with the experimenter whether they remained on
the correct route. This safeguard reduced variance from disorien-
tation and was applied sparingly. Success was defined as reaching
the target within 300 s; otherwise, performance was measured as
proportion of a reference trajectory reached.

After each condition, participants completed an adapted NASA-
TLX, Likert items on visualization effectiveness, and short ratings of
performance, efficiency, and mental model clarity, plus two optional
open-ended questions on difficulties and advantages.

At the end of the study, participants completed a compara-
tive questionnaire ranking the visualizations on usefulness, inter-
pretability, perceived control, and frustration, followed by an open-
ended question about preferred visualization and general comments.
Informal feedback was recorded separately.

5.6 Quantitative Analysis

We analyzed 96 trials from 24 participants across four visualization
conditions. Eight trials reached the 300 s ceiling, and an additional
trial in the Path condition was flagged as a high outlier (282 s) by
the 1.5 X IQR rule. All were retained because they reflect real oper-
ator difficulties. Analyses used within-subject non-parametric tests
(Friedman with Wilcoxon post-hoc, Holm correction) and report
effect sizes (r = Z/¥YN). Robustness checks excluding timeouts
and the outlier produced consistent results. For the NASA-TLX
items, we report Mental Demand and Performance, as they reflect
perceived cognitive load and task performance best.

Task Completion Time. Completion times varied across con-
ditions, with several trials reaching the 300 s ceiling, which were
retained in the analysis (Figure 9(a)). Median times were shortest
for Path (Mdn = 135.2 s) and longest for Baseline (Mdn = 209.9s).
A Friedman test showed significant differences (y?(3) = 15.35,p =
0.002, W = 0.21). Holm-corrected Wilcoxon tests found Path faster
than Baseline (p = 0.008, r = 0.65), Network (p = 0.001, r = 0.80),
and Envelope (p = 0.028, r = 0.55); Baseline, Network, and Envelope
did not differ. Kaplan-Meier curves (Figure 9(b)) confirmed this
pattern: Path completed all trials, while the others showed slower
progress and timeouts. Table 1 provides descriptive statistics for all
dependent measures.
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Table 1: Descriptive statistics (mean and standard deviation) for all dependent measures across visualization conditions.

Measure Baseline Network Path Envelope
(M/SD) (M/SD) (M/SD) (M/SD)

Task Completion Time 198.5/64.8 204.2/64.5 138.3/41.5 184.8/65.2

Number of Pauses 7.79 /851 12.12/1511 3.71/8.47 6.69/10.99

Subjective Cognitive Load 13.21/4.51 12.08/4.38  7.29/4.44 9.25/4.28

Subjective Performance 12.17 / 447 12.12/4.95 15.88/3.01 13.50/4.36

Control 1.46 /0.59 2.21/0.83 4.25/0.90 3.17/0.96

Ease of Interpretation 2.67/1.43 2.88/1.26  433/1.01 3.62/1.21

Understanding 1.21/0.51 2.50/0.83 4.04/1.04 3.25/1.11

Frustration 3.58 /1.06 3.04/1.33 1.46 /0.72 2.46 / 1.06
@ Baseline and Envelope trials typically ended close to the target (Mdn
tl T . "t = 96% and Mdn = 90%), whereas Network failures stopped earlier
e and were more variable (Mdn = 73%, range 35-91%). Because the
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Figure 9: Task completion under delay. (a) Completion times
by condition with a ceiling at 300 s; diamonds mark ceiling
trials and the red dot marks an outlier. (b) Kaplan-Meier
curves showing the proportion of trials ongoing over time,
with numbers at risk listed below.

These findings provide only partial support for H1: only the
Path visualization improved completion time significantly. We per-
formed independent-samples ¢-tests on the participant-averaged
data, which showed that gaming experience did not affect comple-
tion time, High gaming experience (n = 10, M = 171.9, SD = 35.9),
Low/No gaming experience (n = 14, M = 188.3, SD = 49.2),
£(22) = -0.95, p = .35, d = —0.37.

Completion Rates. Completion rates, defined as the propor-
tion of the reference path reached before timeout, were evaluated
only for failed trials. Failures were rare: Baseline (2/24), Network
(4/24), Path (0/24), and Envelope (2/24). When failures occurred,

number of failures per condition was very small, these outcomes
are reported descriptively only, as sample sizes were too small for
reliable statistical testing.

Reactive “move-and-wait” Behavior. Reactive behavior, de-
fined as pauses > 2.56 s (matching the round-trip delay), occurred in
72 of 96 trials (75%). By condition: Baseline (20/24), Network (21/24),
Path (14/24), Envelope (17/24). Pause counts differed significantly
(Friedman y%(3) = 17.59,p < .001, W = 0.24, see Figure 10). Me-
dians were highest in Network (Mdn = 8.5, IQR [1.0-17.5]) and
Baseline (Mdn = 5.0, IQR [1.0-10.8]), and lowest in Path (Mdn = 1.0,
IQR [0.0-2.3]) and Envelope (Mdn = 1.0, IQR [0.0-10.3]). Post-hoc
Wilcoxon tests with Holm correction showed significantly fewer
pauses in Path than in Baseline (p = 0.012, r = 0.22) and in Path
than in Network (p = 0.006, r = 0.26); other contrasts were non-
significant. Thus, Path reduced reliance on “move-and-wait” com-
pared to Baseline and Network, while Envelope showed similarly
low medians but higher variability and no reliable differences. We
performed independent-samples t-tests on the participant-averaged
data, which indicated that gaming experience did not significantly
affect reactive behavior, High gaming experience (n = 10, M = 5.2,
SD = 5.4), Low/No gaming experience (n = 14, M = 9.4, SD = 11.5),
£(19.6) = —1.17, p = .26, d = —0.43.

Pause durations were stable across conditions, with medians of
Baseline (Mdn = 3.18 s, IQR [3.02-3.42]), Network (Mdn = 3.10 s, IQR
[2.89-3.36]), Path(Mdn = 3.22 s, IQR [3.02-3.62]), and Envelope (Mdn
=3.14,IQR [2.93-3.38]). Although a Friedman test indicated overall
differences (y2(3) = 10.90, p = 0.012, W = 0.30), Holm-corrected
post-hoc tests found no reliable pairwise contrasts (pholm > 0.15).
This indicates that the frequency, rather than the length, of pauses
varied systematically with condition.

Correlation Between Reactive Behavior and Completion
Time. A mixed-effects model with random intercepts for partici-
pants showed that pause frequency (pauses >2.56 s) predicted com-
pletion time (8 = 3.97, 95% CI [3.09, 4.85], p < .001); each additional
pause added about 4 s. For descriptive reference, a pooled Spearman
correlation across all 96 trials was also large (p = 0.71, p < .001).
Condition-wise correlations with BCa bootstrap Cls (5,000 itera-
tions) corroborated this pattern: Baseline (p = 0.57, CI [0.15, 0.81]),
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Figure 10: Reactive pauses per trial across conditions. Box-
plots show medians, interquartile ranges, and individual
trials (N = 24 per condition).
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Figure 11: Completion time as a function of pause frequency
by condition. Panels (a—d) show scatterplots for Baseline,
Network, Path, and Envelope (N = 24 each). Dashed lines
with 95% confidence bands are least-squares fits.

Network (p = 0.72, C1[0.47, 0.87]), Path (p = 0.66, CI [0.21, 0.86]),
and Envelope (p = 0.69, CI [0.31, 0.87]); all remained significant
after Holm correction. Together with stable pause durations across
conditions, these results indicate that pause frequency, not length,
drove completion time (see Figure 11).

Subjective Cognitive Load. Subjective cognitive load, mea-
sured with the NASA-TLX Mental Demand item (0-20 scale), dif-
fered across conditions. Scores were highest in Baseline (M=13.21,
SD=4.51) and Network (M=12.08, SD=4.38), lower in Envelope (M =
9.25,SD = 4.28), and lowest in Path (M=7.29, SD=4.44). A Friedman
test indicated differences (y?(3) = 33.20, p < .001, W = 0.46). Post-
hoc Wilcoxon tests (Holm corrected) showed that Path reduced
demand compared to all other conditions (p < .03), and Envelope
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reduced demand compared to Baseline and Network (p = .005);
Baseline and Network did not differ (p = .45).

These results provide partial support for H2. Path reduced de-
mand most; Envelope reduced demand relative to Baseline and Net-
work; Network matched Baseline. Thus, not all uncertainty facets are
equally effective: externalizing the reference path lowered demand,
whereas visualizing network delay added cues without measurable
benefit.

Subjective Performance. Perceived task performance, mea-
sured with the NASA-TLX (0-20 scale, reverse-coded so that higher
values indicate better perceived performance), differed across condi-
tions. Ratings were highest in Path (M = 15.88, SD = 3.01), followed
by Envelope (M = 13.50, SD = 4.36), Baseline (M = 12.17, SD = 4.47),
and Network (M = 12.12, SD = 4.95). A Friedman test indicated
a significant effect (y2(3) = 20.09,p < .001, W = .28). Post-hoc
Wilcoxon tests (Holm corrected) showed that Path was rated higher
than Baseline (p = .002, r = .79), Network (p < .001, r = .85), and
Envelope (p = .037, r = .43). No other contrasts were significant.
Thus, only Path improved subjective performance relative to the
alternatives.

Relations Among Performance, Cognitive Load, and Com-
pletion Time. To assess alignment between subjective ratings and
objective outcomes, we examined correlations among perceived
performance (NASA-TLX), perceived cognitive load, and comple-
tion time within each condition. We expected higher self-rated
performance to align with shorter times and lower demand, and
higher demand to align with longer times. Spearman correlations
with BCa bootstrap confidence intervals (5,000 iterations) and Holm
correction (3 X 4 tests) showed that most associations were negative,
as expected, but did not reach significance after correction. The
only robust effect appeared in the Network condition, where higher
perceived performance was strongly associated with lower per-
ceived cognitive load (p = —.62, 95% CI [-.85, —.18], prolm = .016).
Other correlations, such as performance vs. time in Path and Enve-
lope, were negative but did not survive correction (all pyom > .08).
Overall, convergence between subjective and objective indicators
was limited, with reliable alignment only under the Network visu-
alization (Figure 12).

Comparative Questionnaire Responses. Comparative ques-
tionnaire responses (Likert ratings, rankings, and open-ended pref-
erences) converged on a clear preference for Path. Path received the
highest Likert ratings for control (M=4.25, SD=0.90), understanding
(M=4.04,5D=1.04), and ease of interpretation (M=4.33,SD=1.01),
and the lowest for frustration (M=1.46, SD=0.72). It was most often
ranked first for control (19/24, 79%), performance (15/24, 63%), and
helpfulness (18/24, 75%).

5.7 Qualitative Analysis

To examine participants’ subjective experiences of teleoperation un-
der delay, we conducted an inductive thematic analysis [6]. Adopt-
ing an essentialist epistemology, we treated participant responses
as direct reflections of their experience, prioritizing semantic con-
tent over latent interpretation. The analysis followed a systematic,
data-driven process in which two authors first coded the dataset
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Figure 12: Relations between perceived performance (NASA-
TLX) and mental demand under each visualization condition
(N = 24). Panels show Baseline, Network, Path, and Envelope.
Lines are Spearman fits with 95% BCa bootstrap intervals;
solid lines indicate significant correlations after Holm cor-
rection, dotted lines non-significant.
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Figure 13: Thematic structure derived from the qualitative
analysis. The figure presents two themes and their four re-
lated subthemes arranged with connecting lines.

independently to establish an initial pool of descriptive codes, doc-
umented in a codebook with inclusion and exclusion criteria to
ensure consistent coding and minimize overlap between concep-
tually similar codes (Table 2). These codes were then reviewed
collaboratively to develop a shared understanding of their meaning.
During theme development, we treated codes as provisional and
grouped together codes that described the same underlying idea.
By collapsing these related codes into broader patterns, we moved
from individual observations toward the themes presented below
(see Figure 13).

Theme 1: spatial prediction as control foundation. Spatial
prediction was the central concept that shaped how participants
understood control under delay. Participants consistently treated
control as the problem of acting without knowing where the ro-
bot would end up, rather than a problem of judging when their
inputs would take effect. Participants described control as feeling
deliberate, when a visualization showed a clear future position, and
it became reactive when that position was uncertain. The theme
captures this shared view, with subthemes showing how opera-
tors separated prediction that supported purposeful action from
information that described system behavior but did not help them
control it.
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The subtheme enabling proactive control captures cases
where a clear endpoint allowed operators to plan ahead rather
than constantly fixing mistakes. Participants described the Path
visualization as enabling deliberate anticipation: “the feedforward
provided by the path visualizations helped me adapt my actions”
(P11, Path). Other participants used the predicted path to regulate
their timing, explaining that “the change in visualization showed
me that I needed to halt my inputs, reassess, and consider my
actions carefully” (P5, Path). Several noted that this shift toward
planning reduced frustration, stating that “the task was much less
frustrating” (P15, Path) when a stable future position was visible.
We interpreted this pattern as showing that prediction improved
control because participants could plan their movements instead of
constantly correcting them.

The subtheme system transparency captures situations where
visualizations clarified the robot’s behavior but still did not provide
the clear future position needed for confident control. Participants
valued cues about timing and possible drift but found them difficult
to turn into reliable action. Some reported that rotation was easier to
judge, noting that “during rotation it was clearer when the rotation
would finish” (P12, Network). Others used the Envelope to assess
risk, explaining that “you can see if the robot would hit a rock”
(P24, Envelope). Despite this, participants stressed that these cues
did not help them steer, stating that “it makes me understand what
will happen but it’s not supportive of controlling the robot” (P2,
Network). When the visualization felt too spread out to act on, some
focused on a single point to keep it usable: “in the end I mainly
looked at the middle corner of the yellow surface” (P12, Envelope).
We understood this as transparency improving understanding, but
without a clear future position to guide action, it could not support
effective control.

Theme 2: making information actionable. This theme cap-
tures how participants experienced control as something they had
to work out themselves when the system no longer showed a clear
future position. Participants repeatedly described receiving infor-
mation they could not act on until they transformed it into spatial
expectations. This shift made control a mental task: instead of
responding to a predicted outcome, operators had to create that
outcome through their own judgment. We interpreted this as a
pattern where prediction shifted to the operator, requiring them to
build the robot’s future position from their own reasoning rather
than from the video feed. The subthemes show how operators han-
dled this shift either by converting non-spatial information about
the robot’s state into a future position, or by creating that position
themselves when the system offered no information at all.

The subtheme translation demand captures cases where par-
ticipants converted non-spatial cues into spatial predictions. They
described the mental load directly: “I had to multitask more in an-
alyzing the arrows I pressed and should press in the future” (P21,
Network); “this condition required more mental input as I was fo-
cused on timing my inputs” (P24, Network). Some improved with
practice: “At the start it seemed very bad, but I learned through-
out” (P16, Network). Others used calibration strategies: “I tested
in the training phase what the distance or the angle is for a full
bar” (P8, Network). But translation came with tradeoffs: “I felt like
I could be more precise but anticipated uncertain terrain less, as
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this required me to be more focused” (P5, Network). For some, it
produced distraction: “The visualization made it more confusing,
it added a level of distraction” (P20, Network), or was only useful
reactively: “I only really looked at this when I had already ended up
in a problematic situation” (P12, Network). We interpret this as a
case of resource competition: the mental effort required to translate
these cues consumed the attention that operators otherwise needed
to plan ahead.

The subtheme internal generation captures cases where par-
ticipants constructed predictions entirely from internal resources
when no external cue existed. Some formed workable strategies:
“imagining a ‘ghost car’ it was easy to predict where the robot would
turn” (P2, Baseline); “I would turn a certain amount of time and
hence ‘pre-fire’ that input if I anticipated that I would need to turn”
(P5, Baseline). Others adapted over time: “After some time I learned
to think ahead for my robot” (P16, Baseline). But internal generation
was fragile. Environmental uncertainty disrupted predictions: “I
noticed that it was harder to overcome uncertain terrain when in
this situation” (P5, Baseline); “I had trouble anticipating difficult
terrain” (P5, Baseline). Some reported abrupt failures: “even when
at some point I thought I ‘mastered’ the actions to compensate
the delay, I just ‘got stuck™ (P11, Baseline). Others noted the full
burden of unsupported control: “No visualization of the delay made
it much more difficult to interpret” (P22, Baseline). Still, some de-
scribed creative effort when support was absent: “I realized that
the system would not provide me any help and that it was ‘all on
me’ inciting me to be more creative” (P5, Baseline). We interpret
this pattern as showing that internally generated predictions can
support control, but they are fragile and quickly lose reliability
when the environment becomes uncertain.

6 Discussion

Our findings show that predictive support improves delayed teleop-
eration only when the visual cues externalize uncertainty in a form
that directly matches operators’ control demands. As Moniruzza-
man et al. [39] note, most predictive displays provide deterministic
future-state estimates and rarely incorporate uncertainty or differ-
entiate its sources. We addressed this gap by decomposing delay
into communication, trajectory, and environmental uncertainty
and comparing visualizations that externalize each facet. Only Path
improved task completion time and consistently reduced cognitive
load, whereas Network and Envelope did not show comparable
performance effects. These results indicate that predictive support
becomes effective only when the visualization aligns with the oper-
ator’s control demands.

Effective control under delay relies on the operator’s ability to
visualize the robot’s future position before committing to an input.
This finding echoes Louca et al. [34], who identify predictable for-
ward behavior as a prerequisite for maintaining operator trust. The
fundamental challenge here is that operators must act before feed-
back arrives, meaning control is only viable when the future state
is explicitly shown rather than inferred. As one participant noted,
“the feedforward provided by the path visualizations helped me
adapt my actions” (P11). This confirms feedforward theory, which
suggests that making the outcome of an action visible narrows
Norman’s gulf of execution [45, 60]. By explicitly projecting these
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spatial consequences, the Path visualization bridged this gap and
enabled a shift from reactive to proactive control.

Comparisons across conditions reveal that predictive cues are ef-
fective only when they minimize the cognitive effort of converting
information into spatial control. While the Network visualization
clarified timing, it forced operators to convert temporal cues into
spatial expectations, resulting in continued reliance on reactive
strategies. Similarly, the Envelope provided spatial bounds that
were useful for monitoring risk, but often too broad or physically
unrealistic to guide steering. Because it supported error detection
without offering a committed trajectory, the Envelope visualization
reduced subjective workload but failed to improve control perfor-
mance. This pattern supports findings that mismatches between
prediction and outcome can undermine trust [30]: in this case, the
Envelope visualization made uncertainty visible but not actionable,
creating a critical gap between what participants understood and
what they could actually control.

Analysis of reactive behavior reveals that operators pause not
because of general uncertainty, but specifically to compensate for
missing spatial prediction. While pause durations remained stable
across all conditions, the frequency of pauses spiked whenever the
interface failed to show a committed trajectory. Lacking external
support, participants were forced to rely on fragile internal strate-
gies, such as mentally simulating a “ghost car” to anticipate the
robot’s path. However, these internal models often failed when ter-
rain unpredictability introduced deviations the operators could not
foresee. This suggests that the Path visualization succeeds because
it functions as a robust, externalized version of the mental model
operators struggle to build during training. By directly displaying
this action-outcome mapping, the system removes the cognitive
burden of internal simulation, ensuring control remains stable even
when environmental conditions shift.

These results converge on an actionability gap: predictive cues
improve control only when they directly specify the future state
operators must act upon. While the Network and Envelope visual-
izations provided accurate data, they forced operators to perform
demanding mental calculations to extract a driveable path. The Path
visualization eliminated this cognitive tax by aligning the display
with the spatial decisions required for navigation. This advantage
becomes crucial as delays extend into the two-to-ten-second range
where direct control remains feasible [7]. As delay increases, the
lookahead window grows and internal prediction becomes less reli-
able. Consequently, effective teleoperation under significant delay
requires shifting focus from visualizing the mechanics of uncer-
tainty to projecting the clear, committed trajectory that enables
operators to act.

Our findings reinforce a broader implication for delayed teleop-
eration interfaces: predictive cues should stay tightly coupled to
the spatial decisions operators must make, which in practice means
keeping an intended Path projection as the primary feedforward
and navigation reference. However, in real deployments, especially
over missions with longer delays, the reliability of this preview
will drift as terrain, traction, and robot dynamics change. Rather
than treating the projected Path as a fixed “best guess,” systems
can keep it adaptive by continuously re-validating the predicted
motion against incoming state estimates and terrain cues available
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to the robot, such as slope, roughness, or likely slip. Reduced con-
fidence can then be reflected directly in the same Path projection
by shortening the preview horizon or deemphasizing less reliable
segments, so that what remains visible stays driveable and aligned
with what the operator is trying to achieve next. This supports a
simple planning-update model in which the interface repeatedly
recomputes the predicted Path, estimates near-future risk, and ad-
justs how far ahead it provides a committed reference over time.
Such continuous feasibility checking is already common in field
robotics, for example in planetary navigation [47], and provides a
concrete route toward maintaining effective operator planning un-
der prolonged and potentially increasing environmental instability.

Overall, the findings demonstrate that simply visualizing uncer-
tainty is insufficient for effective control under delay. Predictive
cues must match the representational form of operator decisions.
While foundational work on predictive displays [3, 25] validated the
utility of trajectory visualization, it largely treated delay as a uni-
tary problem. Our decomposition clarifies the mechanism behind
those early successes: trajectory prediction works not because it
provides more information, but because it ensures representational
compatibility between the interface and the task. Although tim-
ing and environmental information offered valid data, they forced
operators to perform the cognitive labor of interpreting what this
information meant for the robot’s future position. This extra effort
prevented valid information from supporting a shift to proactive
control. In this sense, our findings extend existing feedforward
taxonomies [64] by establishing a boundary condition: in spatial
control tasks, effective predictive displays must externalize the spe-
cific future state that operators can directly act upon, rather than
merely exposing the underlying mechanics of uncertainty.

7 Limitations and Future Work

This study employed a fixed 2.56 s round-trip delay to create a sta-
ble experimental baseline, isolating operator performance from the
variability introduced by jitter, buffering, and other forms of fluctu-
ating delay. While real-world communication links often exhibit
such variability, understanding how operators manage a consistent
delay is a prerequisite for understanding how they respond when
that delay begins to fluctuate. Our results therefore separate the
cognitive effects of delayed feedback from the effects of its vari-
ability, providing a controlled foundation for future evaluations in
which delay changes over time. Demonstrating that spatial feedfor-
ward resolves the cognitive challenges of a fixed delay establishes
the basis for examining how predictive support performs when the
communication delay becomes variable.

Our simulation used static terrain to maintain reproducibility
while evaluating the three facets of uncertainty. Real deployments,
however, often involve changing terrain conditions, and other ac-
tors or systems may continue to move during the communication
gap. Under such circumstances, reactive “move-and-wait” behavior
fails more fundamentally: by the time delayed feedback arrives,
the environment or the positions of other agents may have shifted,
making the delayed camera view an unreliable basis for action.
The static environment allowed us to verify how the visualizations
function, but increased environmental variability and independent
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movement will widen the gap between reactive and proactive con-
trol. As these factors grow, timely action becomes essential for
maintaining stable operation under delayed feedback.

Our participant pool consisted of novices, which differs from
operational contexts where experienced teleoperators develop in-
ternal models tuned to familiar delay conditions. Prior work shows
that these internal models remain vulnerable when delays deviate
from what operators have learned: Louca et al. [34] report that even
experienced operators required additional operating time to adapt
when an unexpected delay fault was introduced. This indicates that
robustness to delay is conditional rather than absolute. External-
ized trajectory prediction therefore provides a stabilizing reference
for both novices and experts when the communication delay or
environmental conditions fall outside their learned range.

Finally, while we measured task completion time and perceived
workload to evaluate immediate control performance, we did not
assess Ionger-term constructs such as situational awareness, trust,
or attention allocation. Our findings with the Envelope visualiza-
tion show that visualizing environmental uncertainty does not
necessarily translate into improved operator confidence or control.
Future work should therefore examine how committed trajectory
predictions, such as those in the Path visualization, influence trust
calibration and mitigate the uncertainty loops that arise during
extended remote operation.

8 Conclusion

Communication delay separates operator input from robot feed-
back and forces operators to rely on prediction rather than per-
ception. We examined this problem by distinguishing three facets
of uncertainty created by delay: communication, trajectory, and
environmental. We then evaluated visualizations that externalize
each facet. In a controlled study with a fixed 2.56 s round-trip delay,
only the Path visualization, which displayed near-future motion
as a committed trajectory, reduced task completion time, lowered
perceived cognitive load, and decreased reliance on reactive “move-
and-wait” behavior. The Envelope visualization reduced perceived
cognitive load but did not produce comparable performance gains,
and the Network visualization showed no measurable improvement
beyond delayed-video feedback alone. These findings show that
simply visualizing uncertainty is not enough. Predictive cues must
align with the spatial decisions operators need to make. For direct
teleoperation under delay, showing the trajectory the robot will
follow makes it clear where the robot would end up, which emerges
as the most effective feedforward strategy for restoring proactive
control.
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A Thematic Analysis Codebook

Table 2: Thematic analysis codebook, including code definitions, inclusion and exclusion criteria, and example participant
responses. Exclusion criteria were defined to minimize overlap between related codes and to support consistent code application.

The examples consist of participant responses that were assigned to the corresponding code.

Code

Inclusion Criteria

Exclusion Criteria

Examples

current
state info

Referring to information provided by the visu-
alization about the robot’s current condition or
situation.

“It was useful to know that the robot
would stay in between the yellow parts.”

future
outcome info

Referring to information provided by the visual-
ization about what the robot will do next, how
its movement will end, or where the robot will
end up after an input.

Exclude cases describing the partici-
pant’s own prediction of the robot’s
behavior rather than information pre-
sented by the visualization.

“The visualization increasing in size
made it clear how far the robot would
be after the delay, which worked very
well”

anticipate
behavior

Predicting, foreseeing, or mentally projecting
the robot’s future movement.

“Seeing the different inputs being sent,
I could plan ahead to combine inputs.”

visualization
reduction

Explicitly describing using only part of the avail-
able visualization, including focusing attention
on a specific visual element rather than the full
display.

“I mainly looked at the middle corner
of the yellow surface”

control difficulty

Explicitly stating difficulty operating, directing,
or executing intended robot movement.

Exclude statements describing difficulty
specifically related to turning behavior.

“It was harder to control the robot, even
when at some point I thought I ‘mas-
tered’ the actions”

turning difficulty

Explicitly stating difficulty turning the robot.

“I struggled even more with rotation in
this version”

error
correction info

Explicitly stating that the visualization helped
detect, understand, or correct mistakes that oc-
curred during navigation or control.

“It clearly indicated when I had to go
back because I wouldn’t make the turn.”

task difficulty

Explicitly stating that the task became easier or
harder due to something in the visualization or
the interaction.

“The lack of any feedforward made the
task harder”

temporal effect

Explicitly describing how delay, or temporal
mismatch affected control, decisions, or perfor-
mance.

“The delay really affects the decisions
made during the robot maneuvers.”

terrain effect

Explicitly describing how terrain or surface fea-
tures affected navigation or performance.

“I crashed into some hills that I did not
expect the robot to struggle with.”

learning effect

Explicitly stating that skill, familiarity, or con-
fidence improved due to prior exposure to the
task, robot, or interface.

“I knew what task I needed to perform
because of the previous condition”

emotion

Explicitly describing an emotional reaction in
response to the visualization, the task, or the
robot’s behavior.

Exclude emotional reactions that are
clearly attributable to performance is-
sues, control difficulties, timing effects,
or terrain-related effects.

“I made it to the end, but the way there
was terribly frustrating.”
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